Skip to main content

Epistemological Conceptions of University Teachers and Students of Science

  • Chapter
  • First Online:
Teaching Science with Context

Abstract

This work presents an empirical study comparing NOS conceptions of undergraduate students and teachers of the Faculty of Exact and Natural Sciences of the National University of Mar del Plata, Argentina. Using an ex post facto design, the study was carried out in two stages: one aimed at describing the conceptions each group has, and another targeting their comparison. The results obtained from both groups at the descriptive stage show a tendency toward relativist conceptions about the nature of knowledge and more intellectual ones about the acquisition of knowledge. The comparative study revealed that students’ conceptions on the “acquisition of knowledge” differ from those of their university teachers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Revisions such as in: (Koulaidis and Ogborn 1995; Abd-El-Khalic and Lederman 2000; Hofer and Pintrich 2001; Scrhaw and Olafson 2002; Audi 2003; Schraw 2010; Lederman and Abbel 2014).

  2. 2.

    As in: (Hessen 1973; Koulaidis and Ogborn 1989; Porlán 1994; Porlán et al. 1998; Aldridge et al. 1997; Abd-El-Khalick and Lederman 2000; Sander et al. 2000; Pecharromán and Pozo 2006).

  3. 3.

    “The basic presupposition is that, in any culture or person, there is no single homogeneous way of thinking but different types of verbal thinking. I have tried to characterize this heterogeneity of verbal thinking in terms of a conceptual profile that recognizes the coexistence, in an individual, of two or more meanings for a single word or concept, which are correctly used in different contexts. This coexistence is also possible for a scientific concept in which the classical and modern visions of the same phenomenon are not always comparable” (Mortimer 2001, p. 488).

References

  • Abd-El-Khalic, F., & Lederman, N. (2000). Improving science teachers’ conceptions of the nature of science: A critical review of the literature. International Journal of Science Education, 22, 665–701.

    Article  Google Scholar 

  • Acevedo, J. (1994). Los futuros profesores de enseñanza secundaria ante la sociología y la epistemología de las ciencias. Revista Interuniversitaria de Formación del Profesorado, 19, 111–125.

    Google Scholar 

  • Aldridge, J., Peter, T., & Chung-Chi, C. (1997). Development, validation and use of the belief about science and school science questionnaire http://www.chem.arizona.edu/tpp/basssq.pdf. Accessed 20 Jun 2016.

  • Audi, R. (Ed.). (2003). Diccionario Akal de filosofía. Madrid: Akal.

    Google Scholar 

  • Baena, M. D. (2000). Pensamiento y acción en la enseñanza de las ciencias. Enseñanza de las Ciencias, 18(2), 217–226.

    Google Scholar 

  • Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). An experiment is when you try it and see if it works: A study of grade 7 students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11, 514–529.

    Article  Google Scholar 

  • Carey, S., & Smith, D. C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28, 235–252.

    Article  Google Scholar 

  • Enna, C. C., & del Rocío Gómez Vallarta, M. (2002). Concepciones y representaciones de los maestros de secundaria y bachillerato sobre la naturaleza, el aprendizaje y la enseñanza de las ciencias. Revista Mexicana de InvestigaciónEducativa, 7(16), 577–602.

    Google Scholar 

  • Chai, C. S. (2010). Teachers’ epistemic beliefs and their pedagogical beliefs: A qualitative case study among Singaporean teachers in the context of ICT-supported reforms. TOJET: The Turkish Online Journal of Educational Technology, 9(4), 128–139.

    Google Scholar 

  • Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science. Buckingham: Open University Press.

    Google Scholar 

  • Fourez, G. (1994). La construcción del conocimiento científico: filosofía y ética de la ciencia. Madrid: Narcea.

    Google Scholar 

  • García, M., Mateos, M., & Vilanova, S. (2007). Las concepciones epistemológicas de los profesores universitarios de química. Educación Química, 18(2), 133–138.

    Google Scholar 

  • García, M., & Vilanova, S. (2008). Diseño y validación de un instrumento para analizar concepciones implícitas sobre el aprendizaje en profesores de matemática en formación. Revista Electrónica de Investigación en Educación en Ciencias, 3(2), 27–34.

    Google Scholar 

  • García, M., & Mateos, M. (2013). Las cuestiones de dominio, intersujeto e intrasujeto, en el contenido de las concepciones epistemológicas en estudiantes universitarios. Avances en Piscología Latinoamericana, 31(3), 586–619. Universidad del Rosario, Colombia. ISSN: 1794-4724.

    Google Scholar 

  • García, M., Vilanova, S., & Martín, S. (2013). Relaciones entre las concepciones epistemológicas de los docentes y la enseñanza de las ciencias en el nivel universitario. In C. C. Silva & M. E. B. Prestes (Eds.), Aprendendo ciência e sobre sua natureza: abordagens históricas e filosóficas (pp. 277–295). São Carlos: Tipographia.

    Google Scholar 

  • García, M., Mateos, M., & Vilanova S. (2017). ¿Qué concepciones sobre el conocimiento científico tienen los docentes universitarios de ciencias? Diseño, validación y aplicación de un cuestionario de dilemas para evaluar concepciones implícitas. Revista Docencia Universitaria, CEDEDUIS, ISSN: 2145–8537, Colombia. Accepted, in press.

    Google Scholar 

  • Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822.

    Article  Google Scholar 

  • Hammer, D. (1994). Epistemological beliefs in introductory physics. Cognition and Instruction, 12(2), 151–183.

    Article  Google Scholar 

  • Hessen, J. (1973). Teoría del conocimiento. Madrid: Espasa-Calpe.

    Google Scholar 

  • Hodson, D. (1994). In search of a meaningful relationship: An exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14, 541–562.

    Article  Google Scholar 

  • Hofer, B. (2006). Domain specificity of personal epistemology: Resolved questions, persistent issues, new models. International Journal of Educational Research, 45(1–2), 85–95.

    Article  Google Scholar 

  • Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88–140.

    Article  Google Scholar 

  • Hofer, B. K., & Pintrich, P. R. (2001). Personal epistemology: The psychology of belief about knowledge and knowing. London: LEA.

    Google Scholar 

  • Koulaidis, V., & Ogborn, J. (1989). Philosophy of science: An empirical study of teachers’views. International Journal of Science Education, 11(2), 173–184.

    Article  Google Scholar 

  • Koulaidis, V., & Ogborn, J. (1995). Science teachers’ philosophical assumptions: How well do we understand them? International Journal of Science Education, 17(3), 273–283.

    Article  Google Scholar 

  • Lederman, N. G., & Abell, S. K. (Eds.). (2014). Handbook of research on science education (Vol. II). New York: Routledge.

    Google Scholar 

  • Limón, M. (2006). The domain generality specificity of epistemological belief: A theoretical problem, a methodological problem or both? International Journal of Educational Research, 45(1–2), 7–27.

    Article  Google Scholar 

  • Manassero, M. A., & Alonso, Á. V. (2000). Creencias del profesorado sobre la naturaleza de la ciencia. Revista Interuniversitaria de Formación del Profesorado, 37, 187–208.

    Google Scholar 

  • McGinnis, R., Greber, A., & Watanabe, T. (1997). Development on an instrument to measure teachers candidates’ attitudes and beliefs about the nature of and the teaching of mathematics and science. In Annual Meeting of the National Association for Research in Science Teaching, January 9th–12th, Cincinnati, OH, USA.

    Google Scholar 

  • Mortimer, E. (2001). Perfil Conceptual: formas de pensar y hablar en las clases de ciencias. Infancia y Aprendizaje, 24(4), 475–490.

    Article  Google Scholar 

  • Pomeroy, D. (1993). Implications of teachers’ beliefs about the nature of science: Comparison of the beliefs of scientists, secondary science teachers, and elementary teachers. Science Education, 77(3), 261–278.

    Article  Google Scholar 

  • Raúl, P. A. (1994). Las concepciones epistemológicas de los profesores: El caso de los estudiantes de magisterio. Investigación en la Escuela, 22, 67–84.

    Google Scholar 

  • Raúl, P. A., García, A. R., & Del Pozo, R. M. (1998). Conocimiento profesional y epistemología de los profesores II: Estudios empíricos y conclusiones. Enseñanza de las Ciencias, 16(2), 271–288.

    Google Scholar 

  • Pecharromán, I., & Pozo, J. I. (2006). ¿Cómo sé que es verdad?: epistemologías intuitivas de los estudiantes sobre el conocimiento científico. Investigações em Ensino de Ciências, 11(2), 153–187.

    Google Scholar 

  • Pozo, J. I., & Scheuer, N. (2000). Las concepciones sobre el aprendizaje como teorías implícitas. In J. I. Pozo & C. Monereo (Eds.), El aprendizaje estratégico: Enseñar a aprender desde el currículo. Madrid: Santillana.

    Google Scholar 

  • Ravanal, E., Camacho, J., Escobar, L., & Jara, Y. N. (2014). ¿Qué dicen los profesores universitarios de ciencias sobre el contenido, metodología y evaluación? Análisis desde la acción educativa. REDU Revista de Docencia Universitaria, 12(1), 307–335.

    Article  Google Scholar 

  • Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634–656.

    Article  Google Scholar 

  • Sander, P., Stevenson, K., King, M., & Coates, D. (2000). University students’ expectations of teaching. Studies in Higher Education, 25, 309–323.

    Article  Google Scholar 

  • Schauble, L., Klopfer, L., & Raghavan, K. (1991). Student’s transition from an engineering model to a science model of experimentation. Journal of Research of Science Teaching, 28(9), 859–882.

    Article  Google Scholar 

  • Schwab, J. J. (1964). Structure of the disciplines: Meanings and significances. In G. W. Ford & L. Pugno (Eds.), The structure of knowledge and the curriculum (pp. 1–31). New York: Rand McNally.

    Google Scholar 

  • Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprehension. Journal of Educational Psychology, 82(3), 498–504.

    Article  Google Scholar 

  • Schraw, G. (2010). Teachers’ epistemological stances and citizenship education journal of peace. Education and Social Justice, 4(1), 78–107.

    Google Scholar 

  • Schraw, G., & Olafson, L. J. (2002). Teachers’ epistemological world views and educational practices. Issues in Education, 8, 99–148.

    Google Scholar 

  • Vosniadou, S. (Ed.). (2013). International handbook of research on conceptual change (2nd ed.). New York: Routledge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María B. García .

Editor information

Editors and Affiliations

Appendix

Appendix

Some examples of dilemmas to examine implicit conceptions of scientific knowledge (To see the complete instrument, consult García and Mateos, 2013 or García et al. (accepted for publication).

Below are situations and answers/comments made by teachers.

For each scenario, mark the one you agree with:

1.1 Dilemma 6-A (Translated from Spanish)

Below is a dialogue between people who are discussing about whether the theory of evolution is scientific. Which person better reflects your ideas?

  • Esteban: I believe that the theory of evolution is not scientific. It explains too much and it is difficult to test. Darwinism describes singular events, something that is not repeatable and is, thus, not available for experiments. It cannot be scientific. (Position I)

  • Carlos: Following your criteria, it would be impossible to prove that the world existed yesterday. Even though experimentation is a fundamental starting point, theories are obtained from a process that goes beyond data. Besides, what is important and what makes it truly scientific is its predictive power. For example: if a hypothesis that polar bears with thicker fur survive the icy Arctic winter is formulated, the hypothesis can be contrasted and it can be stated if theory can or cannot explain reality. (Position II)

  • Pedro: I agree with Carlos in that what makes a theory scientific is, as regards Darwin’s theory of evolution, its predictive power; but I do not agree in that experimentation is the starting point. I think that Darwin already had a theory in mind when he started to experiment. Any kind of knowledge stems from reason and then comes the experimentation. (Position III)

  1. (a)

    Esteban

  2. (b)

    Carlos

  3. (c)

    Pedro

1.2 Dilemma 8

The image presented in Fig. 1 corresponds to a piece of graphite (a substance made of carbon atoms) seen through a scanning tunneling microscope with a 1×10-to 12-m resolution (approximately the size of an atom). Look at the picture: what do you see?

Fig. 1
figure 3

Picture of a piece of graphite seen through a scanning tunneling microscope

  1. (a)

    It can only be said that it is the picture of a piece of graphite obtained through a microscope. I would not assert that atoms can be seen. This would be a personal interpretation influenced by the wording of this dilemma. (Position III)

  2. (b)

    If the picture is interpreted from a quantum theory stance, carbon atoms that make up the structure of graphite – as described by science – are observed. (Position II)

  3. (c)

    The empirical confirmation of carbon atoms arranged for graphite as science states. (Position I)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García, M.B., Vilanova, S., Martín, S.S. (2018). Epistemological Conceptions of University Teachers and Students of Science. In: Prestes, M., Silva, C. (eds) Teaching Science with Context. Science: Philosophy, History and Education. Springer, Cham. https://doi.org/10.1007/978-3-319-74036-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74036-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74035-5

  • Online ISBN: 978-3-319-74036-2

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics