Skip to main content

Epistemological Debate Underlying Computer Simulations Used in Science Teaching: The Designers’ Perspective

  • Chapter
  • First Online:
Book cover Teaching Science with Context

Abstract

Many research areas widely use computer simulations, and their role in the production of scientific knowledge is nowadays the subject of debate in philosophy of science. This work presents the results of a phenomenographic case study involving three researchers who design and use computer simulations in physics. The study analyzes these designers’ views on simulations and the role of simulations in physics teaching. The results show that they agree on the fact that computer simulations have changed the way we do science and that they share many characteristics with the classical models: they derive from theories, they help to predict and explain phenomena, and their results need to be empirically validated. They consider simulations used in science teaching – that differ from those used in research in their objectives and in their design – to be useful as they allow students to visualize and work on a phenomenon from the viewpoint of the mathematical model, the physical, and the virtual one in an interrelated way. In general, the designers’ views on simulations and their use in science and education were more complex and meaningful than those conveyed by novice researchers in science teaching or found in research articles on secondary education that look at the same subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.conectarigualdad.gob.ar/Official website of Conectar Igualdad program.

  2. 2.

    http://www.um.es/fem/PersonalWiki/Official website of Francisco Esquembre.

  3. 3.

    http://www.sc.ehu.es/sbweb/fisica/Physics on the computer. Interactive Internet Course on Physics.

  4. 4.

    http://modellus.co/index.php?lang=es Modellus’ official site, which offers a description of the software, its applications, and its theoretical framework.

References

  • Acevedo Díaz, J. A. (2008). El estado actual de la naturaleza de la ciencia en la didáctica de las ciencias. Revista Eureka Enseñanza de Divulgación Científica, 5(2), 134–169.

    Article  Google Scholar 

  • Bayraktar, S. (2002). A meta-analysis of the effectiveness of computer-assisted instruction in science education. Journal of Research on Technology in Education, 34(2), 173–188.

    Article  Google Scholar 

  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.

    Article  Google Scholar 

  • Cartwright, N. (1999). Models and the limits of theory: Quantum Hamiltonians and the BCS model of superconductivity. In M. S. Morgan & M. Morrison (Eds.), Models as mediators: Perspective on natural and social science (pp. 241–281). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179–201.

    Article  Google Scholar 

  • Doerr, H. (1997). Experiment, simulation and analysis: An integrated instructional approach to the concept of force. International Journal of Science Education, 19(3), 265–282.

    Article  Google Scholar 

  • Durán, J. (2015). Nociones de simulación computacional: simulaciones y modelos científicos. Argumentos de Razón Técnica, 18, 87–110.

    Google Scholar 

  • Galison, P. (1996). Computer simulation and the trading zone. In P. Galison & D. J. Stump (Eds.), The disunity of science: Boundaries, contexts, and power (pp. 118–157). Stanford: Stanford University Press.

    Google Scholar 

  • González Ugalde, C. (2014). Investigación fenomenográfica. Revista Internacional de Investigación en Educación, 7(14), 141–158.

    Article  Google Scholar 

  • Greca, I. M., Seoane, M. E., & Arriassecq, I. (2014). Epistemological issues concerning computer simulations in science and their implications for science education. Science & Education, 23(1), 897–921.

    Article  Google Scholar 

  • Guillemot, H. (2010). Connections between simulations and observation in climate computer modeling. Scientist’s practices and “bottom-up epistemology” lessons. Studies in History and Philosophy of Modern Physics, 41, 242–252.

    Article  Google Scholar 

  • Hernández Sampieri, R., Collado, C. F., & Lucio, P. B. (2010). Metodología de la Investigación (5th ed.). Santa Fe: McGraw-Hill.

    Google Scholar 

  • Johnson, A., & Lenhard, J. (2011). Toward a new culture of prediction: Computational modeling in the era of desktop computing. In A. Nordmann et al. (Eds.), Science transformed? Debating claims of an epochal break (pp. 189–200). Pittsburgh: University of Pittsburgh Press.

    Chapter  Google Scholar 

  • Kirschner, P., & Huisman, W. (1998). Dry laboratories in science education: Computer-based practical work. International Journal of Science Education, 20, 665–682.

    Article  Google Scholar 

  • Koponen, I. T., & Tala, S. (2014). Generative modelling in physics and in physics education: From aspects of research practices to suggestions for education. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1143–1169). Dordrecht: Springer.

    Google Scholar 

  • Kuppers, G., & Lenhard, J. (2005). Validation of simulation: Patterns in the social and natural sciences. Journal of Artificial Societies and Social Simulation, 8(4), 1–13. http://jasss.soc.surrey.ac.uk/8/4/3.html. Accessed 20 Jul 2016.

    Google Scholar 

  • Lenhard, J. (2010). Computation and simulation. In R. Frodeman, J. T. Klein, & C. Mitcham (Eds.), The Oxford handbook on interdisciplinarity (pp. 246–258). Oxford: Oxford University Press.

    Google Scholar 

  • López, S., Veit, E. A., & Araujo, I. S. (2016). Una revisión de la literatura sobre el uso de la modelación y simulación computacional para la enseñanza de la física en la educación básica y media. Revista Brasileira de Ensino de Física, 38(2), 1–16.

    Article  Google Scholar 

  • Marton, F. (1986). Phenomenography: A research approach to investigating different understandings of 25 reality. Journal of Thought, 21(3), 28–49.

    Google Scholar 

  • Morgan, M. S., & Morrison, M. (Eds.). (1999). Models as mediators: Perspective on natural and social science. Cambridge: Cambridge University Press.

    Google Scholar 

  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

    Google Scholar 

  • Ören, T. I. (2011a). The many facets of simulation through a collection of about 100 definitions. SCS M&S Magazine, 2(2), 82–92.

    Google Scholar 

  • Ören, T. I. (2011b). A critical review of definitions and about 400 types of modeling and simulation. SCS M&S Magazine, 2(3), 142–151.

    Google Scholar 

  • Seoane, M. E., Arriassecq, I., & Greca, I. (2014). Implicancias epistemológicas en la utilización de simulaciones computacionales en diversas disciplinas científicas. VIII Reunião Latino-Americana sobre Ensino de Física, 3–7 November 2014, Salvador, Bahía, Brasil.

    Google Scholar 

  • Seoane, M. E., Arriassecq, I., & Greca, I. (2015). Simulaciones computacionales: un análisis fenomenográfico. Revista Enseñanza de la Física, 27, 289–296.

    Google Scholar 

  • Sismondo, S. (1999). Models, simulations and their objects. Science in Context, 12(2), 247–260.

    Article  Google Scholar 

  • Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337–1370.

    Article  Google Scholar 

  • Winsberg, E. (1999). Sanctioning models: The epistemology of simulation. Science in Context, 12(2), 275–292.

    Article  Google Scholar 

  • Winsberg, E. (2003). Simulated experiments: Methodology for a virtual world. Philosophy of Science, 70, 105–125.

    Article  Google Scholar 

  • Winsberg, E. (2010). Science in the age of computer simulation. Chicago: The University of Chicago Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eugenia Seoane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seoane, M.E., Arriassecq, I., Greca, I.M. (2018). Epistemological Debate Underlying Computer Simulations Used in Science Teaching: The Designers’ Perspective. In: Prestes, M., Silva, C. (eds) Teaching Science with Context. Science: Philosophy, History and Education. Springer, Cham. https://doi.org/10.1007/978-3-319-74036-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74036-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74035-5

  • Online ISBN: 978-3-319-74036-2

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics