Skip to main content

Historical Reconstruction of Membrane Theoretical Models: An Educative Curriculum Material

  • Chapter
  • First Online:
Teaching Science with Context

Abstract

The authors present an educative material for the teaching of cell biology, through a historical reconstruction of membrane models, designed for tenth grade students (15–16 years old). The material, composed of a teaching sequence and associated extracts of primary sources, addresses the historical development of membrane theoretical models, with the goal of promoting learning about membrane structure and functions, and a more informed view of science. This material is part of a broader study, conducted according to the theoretical and methodological underpinnings of educational design research, in which the teaching sequence and source text were planned, constructed, and tested through an investigation of their outcomes in the science classroom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this work, we use the concept of innovation developed by the group Collaboration in Research and Practice in Science Education (CoPPEC), which gathers together university educational researchers and basic education teacher–researchers, of which the authors are members. According to this concept, educational innovations are intentional, systematic, and participatory processes of producing, recontextualizing, and disseminating novel approaches to teaching that show the capacity to promote professional development of actors in the school community in personal, social, and intellectual terms (Sousa et al. 2016).

  2. 2.

    A teaching sequence is a set of ordered, structured, and articulated activities, aimed at reaching certain educational goals, with a beginning and end known by both teachers and students (Zabala 1998).

  3. 3.

    Newton made this famous statement in a letter to Robert Hooke, in 5 February 1676. Newton was alluding to an image by Bernard of Chartres who in the twelfth century argued that “moderns” could only advance further than the “ancients” because they were “dwarfs sitting on the shoulders of giants” (Nos esse quasi nanos gigantum humeris insidientes). See Merton (1965).

  4. 4.

    The terms “whig” and “whiggish” were coined by Herbert Butterfield in 1931 to critically describe certain historical reports that treated events and institutions from the perspective of subsequent developments (Prestes 2010), anachronistically evaluating the past through the lens of the present. These terms derive from a British political faction and later party, the Whigs, which advocated a constitutional monarchy as an opposition to monarchical absolutism, defended by another party, the Tories. The tendency of historians to write in favor of the Whigs was called “whiggish,” emphasizing a narrative of progress and thus producing a history that ratified the present. Besides anachronism, the adjective “whiggish” also refers to other methodological errors, such as assuming a linear perspective in a historical narrative, in which events in a series are described as simple chains of causes and effects that lead to improved results throughout time (Martins 2010).

  5. 5.

    We recommend that teachers, when reproducing or adapting this material for classroom use, include images of all the scientists mentioned, to allow students to consider their identities of gender, race, and social class. Images of the scientists mentioned can be found in Stillwell (2013) and via the links http://en.wikipedia.org/wiki/Kenneth_Stewart_Cole (Kenneth Stewart Cole); https://www.kcl.ac.uk/lsm/about/history/heroes.aspx#JDanielli (James F. Danielli); http://www.physoc.org/sites/default/files/page/Hugh%20Davson.pdf (Hugh Davson)

    http://www.heuserlab.wustl.edu/experience/Robertson%20obit.pdf (James David Robertson); http://beyondthebandaid.com.au/dr-garth-nicolson/ (Garth L. Nicolson); https://www.mpi-cbg.de/research-groups/alumni/ (Kai Simons).

  6. 6.

    Historical membrane models can be found in Eichman (1999), available in shipseducation.net/9-2/membrane.htm, accessed at Jan 17th 2018. We recommend that teachers include figures showing these models, when reproducing/adapting this material for classroom use.

  7. 7.

    A representation of this model can be found in Eichman (1999), available at shipseducation.net/9-2/membrane.htm, accessed on 17 January 2018.

  8. 8.

    “Chromocyte” is a term used as a synonym of “erythrocyte.” “Lipoid” is an alternative spelling for “lipid.”

  9. 9.

    A representation of this model can be found in Eichman (1999), available at shipseducation.net/9-2/membrane.htm, accessed 17 January 2018.

  10. 10.

    A representation of this model can be found in Eichman (1999), available at shipseducation.net/9-2/membrane.htm, accessed 17 January 2018.

  11. 11.

    The electromicrography of the plasma membrane can be found in Stillwell (2013).

  12. 12.

    Graphic representations of this model are commonly reproduced in textbooks. When using this educative curriculum material, the teacher can include one of these representations or use the original figures from Singer and Nicolson (1972).

  13. 13.

    A representation of this model can be found in Eichman (1999), available in shipseducation.net/9-2/membrane.htm, accessed at Jan 17th 2018.

  14. 14.

    A representation of this model can be found in Eichman (1999), available at shipseducation.net/9-2/membrane.htm, accessed on 17 January 2018.

References

  • Allchin, D. (2003). Scientific myth-conceptions. Science & Education, 87, 329–351.

    Article  Google Scholar 

  • Allchin, D. (2004). Pseudohistory and pseudoscience. Science & Education, 3, 179–195.

    Article  Google Scholar 

  • Andrade, M. A. B. S., & Caldeira, A. M. A. (2009). O modelo de DNA e a biologia molecular: inserção histórica para o ensino de biologia. Filosofia e História da Biologia, 4, 139–165.

    Google Scholar 

  • Bastos, F. (1992). O conceito de célula viva entre alunos do segundo grau. Em Aberto, 11, 63–69.

    Google Scholar 

  • Brasil. (1999). Ministério da Educação, Secretaria de Educação Média e Tecnológica. In Parâmetros Curriculares Nacionais: Ensino Médio. Brasília: Ministério da Educação.

    Google Scholar 

  • Chalmers, A. F. (1995). O que é ciência afinal? São Paulo: Brasiliense.

    Google Scholar 

  • Chevallard, Y. (1989). On didactic transposition theory: Some introductory notes. In Proceedings of the International Symposium on Selected Domains of Research and Development in Mathematics Education, 51–62. http://yves.chevallard.free.fr/spip/spip/article.php3?id_article=122. Accessed 20 July 2016.

  • Chevallard, Y. (1991). La transposición didáctica: del saber sabio al saber enseñado. Buenos Aires: Aique.

    Google Scholar 

  • Chiatppetta, E. L., & Fillman, D. A. (1998). Clarifying the place of essential topics and unifying principles in high school biology. School Science and Mathematics, 98, 12–18.

    Article  Google Scholar 

  • Danielli, J. F., & Davson, H. (1935). A contribution to the theory of permeability of thin films. Journal of Cellular Physiology, 5, 495–508.

    Article  Google Scholar 

  • Daston, L., & Galison, P. (2010). Objectivity. New York: Zone Books.

    Google Scholar 

  • Davis, E. A., & Krajcik, J. (2005). Designing educative curriculum materials to promote teacher learning. Educational Researcher, 34, 3–14.

    Article  Google Scholar 

  • Davis, E. A., Palincsar, A. S., Arias, A. M., Bismack, A. S., Marulis, L. M., & Iwashyna, S. K. (2014). Designing educative curriculum materials: A theoretically and empirically driven process. Harvard Educational Review, 84, 24–52.

    Article  Google Scholar 

  • Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32, 5–8.

    Article  Google Scholar 

  • Dias, M. A. d. S., Núñez, I. B., & Ramos, I. C. d. O. (2010). Dificuldades na aprendizagem dos conteúdos: uma leitura a partir dos resultados das provas de biologia do vestibular da Universidade Federal do Rio Grande do Norte (2001 a 2008). Revista Educação em Questão, 37, 219–243.

    Google Scholar 

  • Fogaça, M. (2006). Papel da inferência na relação entre os modelos mentais e modelos científicos de célula. Dissertação de Mestrado em Ensino de Ciências e da Matemática, Faculdade de Educação da Universidade de São Paulo, São Paulo, Brasil.

    Google Scholar 

  • Garcia Barrutia, M. S., Artacho, C. J., Diaz, J. F., Perez, J. F., & Redondo, B. T. (2002). Evolución de conceptos relacionados con la estructura y función de membranas celulares en alumnos de enseñanza secundaria y universidad. Anales de Biologia, 24, 201–207.

    Google Scholar 

  • García Irles, M., Huertas, Y. S., & Ortells, J. M. S. (2013). Aprendizaje basado en problemas en biología celular: una forma de explorar la ciencia. Revista de Educación en Biología, 16, 67–77.

    Google Scholar 

  • Kampourakis, K. (2013). Mendel and the path to genetics: Portraying science as a social process. Science & Education, 22, 293–324.

    Article  Google Scholar 

  • Kurt, H., Ekici, G., Aktas, M., & Aksu, Ö. (2013). Determining biology student teachers’ cognitive structure on the concept of “diffusion” through the free word-association test and the drawing-writing technique. International Education Studies, 6, 187–206.

    Article  Google Scholar 

  • Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. II. Liquids. Journal of the American Chemical Society, 39, 1848–1906.

    Article  Google Scholar 

  • Larsson, C. (2008). Critical aspects of understanding of the structure and function of the cell membrane: Students’ interpretation of visualizations of transport through the cell membrane. Thesis, Linköping University, Sweden. http://www.divaportal.org/smash/get/diva2:25027/FULLTEXT01.pdf. Accessed 20 Oct 2016.

  • Lazarowitz, R., & Penso, S. (1992). High school students’ difficulties in learning biology concepts. Journal of Biological Education, 26, 215–224.

    Article  Google Scholar 

  • Leite, L. (2002). History of science in science education: Development and validation of a checklist for analysing the historical content of science textbooks. Science & Education, 11, 333–359.

    Article  Google Scholar 

  • Lima, G. P. S., & Teixeira, P. M. M. (2011). Análise de uma sequência didática de citologia baseada no movimento CTS. In Atas do VIII Encontro Nacional de Pesquisa em Educação em Ciências. Campinas: Associação Brasileira de Pesquisa em Educação em Ciências.

    Google Scholar 

  • Martins, R. A. (2006). Introdução: a história das ciências e seus usos na educação. In C. C. Silva (Ed.), Estudos de história e filosofia das ciências: subsídios para aplicação no ensino (pp. xvii–xxxx). São Paulo: Editora Livraria da Física.

    Google Scholar 

  • Martins, R. A. (2010). Seria possível uma história da ciência totalmente neutra, sem qualquer aspecto whig? Boletim de História e Filosofia da Biologia, 4(3), 4–7.

    Google Scholar 

  • Martins, L. A. C. P., & Brito, A. P. O. P. M. (2006). A história da ciência e o ensino da genética e evolução no nível médio: um estudo de caso. In C. C. Silva (Ed.), Estudos de história e filosofia das ciências: subsídios para aplicação no ensino (pp. 245–264). São Paulo: Editora Livraria da Física.

    Google Scholar 

  • Matthews, M. R. (1998). In defense of modest goals when teaching about the nature of science. Journal of Research in Science Teaching, 35, 161–174.

    Article  Google Scholar 

  • Matthews, M. R. (2014). Science teaching: The contribution of history and philosophy of science, 20th Anniversary Revised and Expanded Edition. New York: Routledge.

    Google Scholar 

  • Merton, R. K. (1965). On the shoulders of giants. Chicago: The University of Chicago Press.

    Google Scholar 

  • Palmero, M. L. R., & Moreira, M. A. (1999). Modelos mentales de la estructura y el funcionamiento de la célula: dos estudios de caso. Investigações em Ensino de Ciências, 4, 121–160.

    Google Scholar 

  • Palmero, M. L. R., & Moreira, M. A. (2002). Modelos mentales vs esquemas de célula. Investigações em Ensino de Ciências, 7, 77–103.

    Google Scholar 

  • Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 167–199.

    Article  Google Scholar 

  • Plomp, T., & Nieveen, N. (Eds.). (2009). An introduction to educational design research. Enschede: SLO – Netherlands Institute for Curriculum Development.

    Google Scholar 

  • Prestes, M. E. B. (2010). Whiggismo proposto por Herbert Butterfield. Boletim de História e Filosofia da Biologia, 4(3), 2–4.

    Google Scholar 

  • Sarmento, A. C. de H. (2016). Como ensinar citologia e promover uma visão informada da ciência no nível médio de escolaridade. Dissertação de Mestrado em Ensino, Filosofia e História das Ciências, Universidade Federal da Bahia e Universidade Estadual de Feira de Santana, Salvador, Brasil.

    Google Scholar 

  • Schwab, J. J. (1964). The structure of the natural sciences. In G. W. Ford & L. Pugno (Eds.), The structure of knowledge and the curriculum (pp. 31–49). Chicago: Rand McNally.

    Google Scholar 

  • Schwab, J. J. (1969). College curriculum and student protest. Chicago: University of Chicago Press.

    Google Scholar 

  • Sequeira, M., & Leite, L. (1988). A história da ciência no ensino: aprendizagem das ciências. Revista portuguesa de educação, 1, 29–40.

    Google Scholar 

  • Silveira, M. L. d., & de Araújo, M. F. F. (2014). Alternativas didáticas para o ensino: uma revisão considerando a citologia. In Atas do V Encontro Nacional de Ensino de Biologia (V ENEBIO) II e Encontro Regional de Ensino de Biologia, (II EREBIO) (Vol. 7, pp. 5607–5617). São Paulo: SBEnBio.

    Google Scholar 

  • Simons, K., & Ikonen, E. (1997). Functional rafts in cell membranes. Nature, 387, 569–572.

    Article  Google Scholar 

  • Simons, K., & Van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry, 27, 6197–6202.

    Article  Google Scholar 

  • Sousa, A. E. d. A., Muniz, C., & Sarmento, A. C. d. H. (2016). O processo heurístico da construção do conceito de inovações educacionais por um grupo colaborativo de pesquisa. In C. Sepúlveda & M. Almeida (Eds.), Pesquisa Colaborativa e Inovações Educacionais no Ensino de Biologia (pp. 97–125). Feira de Santana: Editora UEFS.

    Google Scholar 

  • Tsai, C.-C. (2004). Conceptions of learning science among high school students in Taiwan: A phenomenographic analysis. International Journal of Science Education, 26, 1733–1750.

    Article  Google Scholar 

  • Van Den Akker, J., & Gravemeijer, K. (2006). In S. Mckenney & N. Nieveen (Eds.), Educational design research. London: Routledge.

    Google Scholar 

  • Wigfield, A., & Cambria, J. (2010). Students’ achievement values, goal orientations, and interest: Definitions, development, and relations to achievement outcomes. Developmental Review, 30, 1–35.

    Article  Google Scholar 

  • Zorzetto, R. (2013). Fronteiras fluidas: Propriedades elásticas da membrana variam segundo tipo e função da célula. Pesquisa FAPESP, 213, 50–53.

    Google Scholar 

References Used to Elaborate the Source Text

  • Amabis, J. M., & Martho, G. R. (2010). Biologia. v. 1. 3a ed. São Paulo: Moderna.

    Google Scholar 

  • Bizzo, N. (2011). Novas bases da biologia. v 1. São Paulo: Ática.

    Google Scholar 

  • Edidin, M. (2003).The state of lipid rafts: from model membranes to cells. Annual Review of Biophysics and Biomolecular Structure, 32, 257–283.

    Article  Google Scholar 

  • Eichman, P. (1999). From the lipid bilayer to the fluid mosaic: A brief history of membrane models. http://shipseducation.net/9-2/membrane.htm. Accessed 20 Oct 2016.

  • Gorter, E., & Grendel, F. (1925). On bimolecular layers of lipids on the chromocytes of the blood. Journal of Experimental Medicine, 41, 439–443.

    Article  Google Scholar 

  • Heimburg, T. (2007). Membranes: An introduction. In T. Heimburg (Ed.), Thermal biophysics of membranes (pp. 1–19). Weinheim: Wiley-VCH Verlag.

    Google Scholar 

  • Joglar, C., Quintanilla, M., Ravanal, E., & Brunstein, J. (2011). El desarrollo histórico del modelo científico de membrana plasmática: Perspectivas didácticas. In Atas do VIII Encontro Nacional de Pesquisa em Educação em Ciências (ENPEC). Campinas: ABRAPEC.

    Google Scholar 

  • Leathes, J. B., & Raper, H. S. (1925). Monographs on biochemistry: The fats (2nd ed.). London: Longmans.

    Google Scholar 

  • Linhares, S., & Gewandsznajder, F. (2011). Biologia hoje (Vol. 1, 1st ed.). São Paulo, Ática.

    Google Scholar 

  • Lombard, J. (2014). Once upon a time the cell membranes: 175 years of cell boundary research. Biology Direct, 9, 32.

    Article  Google Scholar 

  • Nelson, D., & Cox, M. (2005). Lehninger principles of biochemistry (4th ed.). New York: W.H. Freeman.

    Google Scholar 

  • Singer, S. J., & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, 175, 720–731.

    Article  Google Scholar 

  • Stillwell, W. (2013). An introduction to biological membranes: From bilayers to rafts. London: Elsevier Science.

    Book  Google Scholar 

  • Zabala, A. A. (1998). Prática educativa: como ensinar. Porto Alegre: Artmed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarmento, A.C., Sepúlveda, C., El-Hani, C.N. (2018). Historical Reconstruction of Membrane Theoretical Models: An Educative Curriculum Material. In: Prestes, M., Silva, C. (eds) Teaching Science with Context. Science: Philosophy, History and Education. Springer, Cham. https://doi.org/10.1007/978-3-319-74036-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74036-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74035-5

  • Online ISBN: 978-3-319-74036-2

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics