Skip to main content

The Influence of Rotating Magnetic Field on Biochemical Processing

  • Conference paper
  • First Online:
Practical Aspects of Chemical Engineering

Abstract

Enzymes have extremely interesting properties that make them catalysis for a huge number of chemical reactions. These little-reaction machines are commonly applied in chemical engineering processes. There are many different approaches and methods available to improve enzymes activated processes. This paper discusses a possibility to apply them for a rotating magnetic field as a tool in modern chemical engineering to precisely regulate ex vivo and in vivo enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anton-Leberre V, Haanappel E, Marasaund N et al (2010) Expsoure to high static or pulsed magnetic fields does not affect cellular processes in the yeast Saccharomyces cerevisiae. Bioelectromagnetics 31:28–38

    CAS  Google Scholar 

  • Bahar T, Çelebi SS (2000) Performance of immobilized glucoamylase in a magnetically stabilized fluidized bed reactor (MSFBR). Enzyme Microb Tech 26:28–33

    Article  CAS  Google Scholar 

  • Berendsen WR, Lapin A, Reuss M (2008) Investigations of reaction kinetics for immobilized enzymes–identification of parameters in the presence of diffusion limitation. Biotechnol Prog 22:1305–1312

    Article  Google Scholar 

  • Bialek W, Bruno WJ, Joseph J et al (1989) Quantum and classical dynamics in biochemical reactions. Photosynth Res 22(1):15–27

    Article  CAS  Google Scholar 

  • Blank M, Soo L (2001) Optimal frequencies for magnetic acceleration of cytochrome oxidase and Na, K-ATPase Reactions. Bioelectrochemistry 53(2):171–174

    Article  CAS  Google Scholar 

  • Bramble JL, Graves DJ, Brodelius P (1990) Plant cell culture using a novel bioreactor: the magnetically stabilized fluidized bed. Biotechnol Prog 6:452–457

    Article  CAS  Google Scholar 

  • Calabrò E, Magazù S (2012) Electromagnetic fields effects on the secondary structure of lysozyme and bioprotective effectiveness of trehalose. Adv Phys Chem 2012, Article ID 970369

    Google Scholar 

  • Campbell B, Petukh M, Alexov E et al (2014) On the electrostatic properties of homodimeric proteins. J Theor Comput Chem 13(3):1440007

    Article  Google Scholar 

  • Diamond R (1974) Real–space refinement of the structure of hen egg–white lysozyme. J Mol Biol 82:371–391

    Article  CAS  Google Scholar 

  • Domingues L, Vicente AA, Lima N et al (2000) Applications of yeast flocculation in biotechnological processes. Biotechnol Bioprocess Eng 5:288–305

    Article  CAS  Google Scholar 

  • Dong-Hao Z, Li-Xia Y, Li-Juan P (2013) Parameters affecting the performance of immobilized enzyme. J Chem 2013, Article ID 946248

    Google Scholar 

  • Eichwald C, Walleczek J (1996) Model for magnetic field effects on radical pair recombination in enzyme kinetics. Biophys J 71:623–631

    Article  CAS  Google Scholar 

  • Gaafar ESA, Hanafy MS, Tohamy EY et al (2008) The effect electromagnetic field on protein molecular structure of E. coli and its pathogenesis. Rom J Biophys 18:145–169

    CAS  Google Scholar 

  • Giardina P, Faraco V, Pezzella C et al (2010) Laccases: a never-ending story. Cell Mol Life Sci 67(3):369–385

    Article  CAS  Google Scholar 

  • Gogate PR, Beenackers AACM, Pandit AB (2000) Multiple-impeller systems with a special emphasis on bioreactors: a critical review. Biochem Eng J 6:109–144

    Article  CAS  Google Scholar 

  • Golovin YI, Gribanovskii SL, Golovin DY et al (2014) Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules. Phys Solid State 56(7):1342

    Article  CAS  Google Scholar 

  • Grissom CB (1995) Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical-pair recombination. Chem Rev 95(1):3–24

    Article  CAS  Google Scholar 

  • Gusakov AV, Sinitsyn AP, Davydkin IYOV et al (1995) Use of a bioreactor with intense mass transfer for enzymatic hydrolysis of cellulose-containing materials. Appl Biochem Micro 31:310–314

    Google Scholar 

  • Gusakov AV, Sinitsyn AP, Davydkin IY et al (1996) Enhancement of enzymatic cellulose hydrolysis using a novel type of bioreactor with intensive stirring. Appl Biochem Micro 56:141–153

    CAS  Google Scholar 

  • Hajiani P, Larachi F (2012) Reducing Taylor dispersion in capillary laminar flows using magnetically excited nanoparticles: nanomixing mechanism for micro/nanoscale applications. Chem Eng J 203:492–498

    Article  CAS  Google Scholar 

  • Hajiani P, Larachi F (2013) Giant effective liquid-self diffusion in stagnant liquids by magnetic nanomixing. Chem Eng Process 71:77–82

    Article  CAS  Google Scholar 

  • Holysz L, Szcześ A, Chibowski E (2007) Effects of a static magnetic field on water and electrolyte solutions. J Colloid Interface Sci 316(2):996–1002

    Article  CAS  Google Scholar 

  • Hristov J (2002) Magnetic field assisted fluidization—a unified approach. Part 1: fundamentals and relevant hydrodynamics. Rev Chem Eng 18:295–509

    CAS  Google Scholar 

  • Hristov J (2010) Magnetic field assisted fluidization—a unified approach. Part 8: mass transfer: magnetically assisted bioprocess. Rev Chem Eng 26:55–128

    Article  CAS  Google Scholar 

  • Hristov JY, Ivanova V (1999) Magnetic field assisted bioreactors. Recent Res Dev Ferment Bioeng 2:41–95

    CAS  Google Scholar 

  • Hunt RW, Zavalin A, Bhatnagar A et al (2009) Electromagnetic biostimulation of living cultures for biotechnology, biofuel and bioenergy applications. Int J Mol Sci 10:4515–4558

    Article  CAS  Google Scholar 

  • Jones AR, Hay S, Woodward JR et al (2007) Magnetic field effect studies indicate reduced geminate recombination of the radical pair in substrate-bound adenosylcobalamin-dependent ethanolamine ammonia lyase. J Am Chem Soc 129(50):15718–15727

    Article  CAS  Google Scholar 

  • Kholoov Y (ed) (1974) Influence of magnetic field on biological objects. U.S. Joint Publications Research Service, Arlington, VA

    Google Scholar 

  • Klyachko NL, Sokolsky-Papkov M, Pothayee N et al (2012) Changing the enzyme reaction rate in magnetic nanosuspensions by a non-heating magnetic field. Angew Chem Int Ed 51:12016–12019

    Article  CAS  Google Scholar 

  • Ledakowicz S (2011) Inżynieria biochemiczna. Wydawnictwo Naukowo Techniczne, Warszawa

    Google Scholar 

  • Li JY, Wang AJ, Ren NQ et al (2014) Effects of static magnetic field on phosphate buffer solution. Adv Mat Res 953–954:1293–1296

    Google Scholar 

  • Magazù S, Calabrò E (2011) Studying the electromagnetic-induced changes of the secondary structure of bovine serum albumin and the bioprotective effectiveness of trehalose by Fourier transform infrared spectroscopy. J Phys Chem B 115(21):6818–6826

    Article  Google Scholar 

  • Mehta J, Bhardwaj N, Bhardwaj SK et al (2016) Recent advances in enzyme immobilization techniques: metal-organic frameworks as novel substrates. Coord Chem Rev 322:30–40

    Article  CAS  Google Scholar 

  • Mei G, Di Venere A, Rosato N et al (2005) The importance of being dimeric. FEBS J 272(1):16–27

    Article  CAS  Google Scholar 

  • Messiha HL, Wongnate T, Chaiyen P et al (2014) Magnetic field effects as a result of the radical pair mechanism are unlikely in redox enzymes. J R Soc Interface 12:20141155

    Article  Google Scholar 

  • Mizuki T, Watanabe N, Nagaoka Y et al (2010) Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field. Biochem Biophys Res Commun 393(4):779–782

    Article  CAS  Google Scholar 

  • Mizuki T, Sawai M, Nagaoka Y et al (2013) Activity of lipase and chitinase immobilized on superparamagnetic particles in a rotational magnetic field. PLoS One 8(6):e66528

    Article  CAS  Google Scholar 

  • Moffat HK (1991) Electromagnetic stirring. Phys Fluids A 3:1336–1343

    Article  Google Scholar 

  • Moffat G, Williams RA, Webb C et al (1994) Selective separation in environmental and industrial processes using magnetic carrier technology. Miner Eng 7:1039–1056

    Article  CAS  Google Scholar 

  • Mohamad NR, Marzuki NH, Buang NA et al (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29(2):205–220

    Article  CAS  Google Scholar 

  • Molokov S, Moreau R, Moffat HK (2007) Magnetohydrodynaics. In: Molokov S, Moreau S, Moffatt R, Keith H (eds) Historical evolution and trends. Springer, The Netherlands

    Google Scholar 

  • Myśliwiec D, Szcześ A, Chibowski S (2016) Influence of static magnetic field on the kinetics of calcium carbonate formation. J Ind Eng Chem 35:400–407

    Article  Google Scholar 

  • Pringle JR (1981) The Saccharomyces cerevisiae cell cycle. The molecular biology of yeast Saccharomyces: life cycle and inheritance, pp 97–142

    Google Scholar 

  • Rakoczy R (2010) Enhancement of solid dissolution process under the influence of rotating magnetic field. Chem Eng Process 49:42–50

    Article  CAS  Google Scholar 

  • Rakoczy R, Masiuk S (2010) Influence of transverse rotating magnetic field on enhancement of dissolution process. AIChE J 56:1416–1433

    Article  CAS  Google Scholar 

  • Rakoczy R, Masiuk S (2011) Studies of mixing process induced by a transverse rotating magnetic field. Chem Eng Sci 66:2298–2308

    Article  CAS  Google Scholar 

  • Rakoczy R, Konopacki M, Fijałkowski K (2016) The influence of a ferrofluid in the presence of an external rotating magnetic field on the growth rate and cell metabolic activity of a wine yeast strain. Biochem Eng J 109:43–50

    Article  CAS  Google Scholar 

  • Rakoczy R, Lechowska J, Kordas M et al (2017) Effects of a rotating magnetic field on gas–liquid mass transfer coeffcient. Chem Eng J 327:608–617

    Article  CAS  Google Scholar 

  • Rosensweig RE (1979) Fluidization: hydrodynamics stabilization with a magnetic field. Science 204:57–60

    Article  CAS  Google Scholar 

  • Rumfeldt JA, Galvagnion C, Vassall KA et al (2008) Conformational stability and folding mechanisms of dimeric proteins. Prog Biophys Mol Biol 1:61–84

    Article  Google Scholar 

  • Ryu KS, Shaikh K, Goluch E et al (2004) Micro magnet stir-bar mixer integrated with parylene microfluidic channels. Lab Chip 4:608–613

    Article  CAS  Google Scholar 

  • Sada E, Katoh S, Shiozawa M et al (1981) Performance of fluidized-bed reactors utilizing magnetic-fields. Biotechnol Bioeng 23:2561–2567

    Article  CAS  Google Scholar 

  • Sakai Y, Taguchi H, Takahashi F (1989) The effect of alternative magnetic field on the pigment ejection from magnetic anisotropic gel beads. B Chem Soc Jpn 62:3207–3210

    Article  CAS  Google Scholar 

  • Sakai Y, Kuwahata M, Takahashi F (1990) The effect of alternating magnetic field on the magnetic anisotropic gel beads immobilized catalase. B Chem Soc Jpn 63:2358–2362

    Article  CAS  Google Scholar 

  • Sakai Y, Kuwahata M, Takahashi F (1992a) Numerical formulation of pigment release from magnetically anisotropic gel beads with respect to the magnetic moment in an alternating magnetic field. B Chem Soc Jpn 65:396–399

    Google Scholar 

  • Sakai Y, Osada K, Takahashi F et al (1992b) Preparation and properties of immobilized glucoamylase on a magnetically anisotropic carrier comprising a ferromagnetic powder coated by albumin. B Chem Soc Jpn 65:3430–3433

    Google Scholar 

  • Sakai Y, Tamiya Y, Takahashi F (1994) Enhancement of ethanol formation by immobilized yeast containing iron powder or Ba-ferrite due to eddy current or hysteresis. J Ferment Bioeng 77:169–172

    Article  CAS  Google Scholar 

  • Sakai Y, Oishi A, Takahashi F (1999) Enhancement of enzyme reaction of magnetically anisotropic polyacrylamide gel rods immobilized with ferromagnetic powder in an alternating magnetic field. Biotechnol Bioeng 62:363–367

    Article  CAS  Google Scholar 

  • Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    Article  CAS  Google Scholar 

  • Sheu SY, Yang DY, Selzle HL, Schlag EW (2003) Energetics of hydrogen bonds in peptides. Proc Natl Acad Sci USA 100(22):12683-12687. 28 October 2003

    Google Scholar 

  • Singh RK, Tiwari MK, Singh R et al (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14:1232–1277

    Article  CAS  Google Scholar 

  • Sinha N, Smith-Gill SJ (2002) Electrostatics in protein binding and function. Curr Protein Pept Sci 3(6):601–614

    Article  CAS  Google Scholar 

  • Sinitsyn AP, Gusakov AV, Davydkin IY et al (1993) A hyperefficient process for enzymatic cellulose hydrolysis in the intensive mass transfer reactor. Biotechnol Lett 15:283–288

    Article  CAS  Google Scholar 

  • Steiner UE, Ulrich T (1989) Magnetic field effects in chemical kinetics and related phenomena. Chem Rev 89:51–147

    Article  CAS  Google Scholar 

  • Szcześ A, Chibowski E, Hołysz L et al (2011) Effects of static magnetic field on electrolyte solutions under kinetic condition. J Phys Chem A 115(21):5449–5452

    Article  Google Scholar 

  • Szefczyk B, Mulholland AJ, Ranaghan KE et al (2004) Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field. J Am Chem Soc 126(49):16148–16159

    Article  CAS  Google Scholar 

  • Taraban MB, Leshina TV, Anderson MA et al (1997) Magnetic field dependence of electron transfer and the role of electron spin in heme enzymes: horseradish peroxidase. J Am Chem Soc 119:5768–5769

    Article  CAS  Google Scholar 

  • Vaghari H, Jafarizadeh-Malmiri H, Mohammadlou MS et al (2016) Application of in smart enzyme immobilization. Biotechnol Lett 38:223–233

    Article  CAS  Google Scholar 

  • Van den Burg B, Vriend G, Veltman OR et al (1998) Engineering an enzyme to resist boiling. Proc Natl Acad Sci USA

    Google Scholar 

  • Vangas J, Viesturs U, Fort I (1999) Mixing intensity studies in a pilot plant stirred bioreactor with an electromagnetic drive. Biochem Eng J 3:25–33

    Article  Google Scholar 

  • Wang Y, Zhe J, Chung BTF et al (2008) A rapid magnetic particle driven micromixer. Microfluid Nanofluid 4:375–389

    Article  Google Scholar 

  • Webb C, Kang H, Moffat G et al (1996) The magnetically stabilized fluidized bed bioreactor: a tool for improved mass transfer in immobilized enzyme systems? Chem Eng J 61:241–246

    CAS  Google Scholar 

  • Woodward JR (2002) Radical pairs in solution. Prog React Kinet Mech 27:165–207

    Article  CAS  Google Scholar 

  • Xiu GH, Jiang L, Li P (2001) Mass-transfer limitations for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor. Biotechnol Bioeng 74:29–39

    Article  CAS  Google Scholar 

  • Yang K, Xu NS, Su WW (2010) Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. J Biotechnol 148(2-3):119-127. 20 July 2010

    Google Scholar 

  • Zheng M, Su Z, Ji X, Ma G, Wang P, Zhang S (2013) Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles. J Biotechnol 168(2):212-217. 20 October 2013

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Science Centre Poland within the PRELUDIUM 11 Programme (Grant No. 2016/21/N/ST8/02343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Rakoczy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Drozd, R., Wasak, A., Konopacki, M., Kordas, M., Rakoczy, R. (2018). The Influence of Rotating Magnetic Field on Biochemical Processing. In: Ochowiak, M., Woziwodzki, S., Doligalski, M., Mitkowski, P. (eds) Practical Aspects of Chemical Engineering. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73978-6_5

Download citation

Publish with us

Policies and ethics