Skip to main content

Extensional Flow of Polymer Solutions Through the Porous Media

  • Conference paper
  • First Online:
Practical Aspects of Chemical Engineering

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

Abstract

The flow through porous media plays an important role within several areas of science. In many real processes in which the channels undergo continuous expansion and contraction, fluids are subjected not only to shearing but also to stretching. Such examples are the fluid flows through the plate heat exchangers, the porous beds and gaps of rock during crude oil extraction. Typically, pure and/or extensional flow is often required in many practical situations. Most often, we are dealing with the so-called mixed flow, where the deformation rates have parallel and perpendicular components to the flow direction. Solutions of high molecular weight polymers exhibit considerable differences in extensional and shear flow behaviors, and the ratio of extensional viscosity to shear viscosity can be as much as 100 times higher. In case of the flexible polymer solutions through porous media is the increase in flow resistance obtained beyond a critical flow rate. That increase has been attributed to the extensional nature of the flow field in the pores caused by the successive expansions and contractions. Such solutions exhibit strain hardening in extension. In case of the polymer solutions with semi-rigid and rigid chain structures, only the extent strain thinning region can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arigo MT, McKinley GH (1998) An experimental investigation of negative wakes behind spheres settling in a shear-thinning viscoelastic fluid. Rheol Acta 37:307–327

    Article  CAS  Google Scholar 

  • Arigo MT, Rajagopalan D, Shapley N et al (1995) The sedimentation of a sphere through an elastic fluid. Part 1. Steady motion. J Non-Newton Fluid 60:225–257

    Article  CAS  Google Scholar 

  • Amundarain JL, Castro LJ, Rojas M et al (2009) Solutions of xanthan gum/guar gum mixtures: shear rheology, porous media flow, and solids transport in annular flow. Rheol Acta 48:491–498

    Article  CAS  Google Scholar 

  • Batchelor GK (1971) The stress generated in a non-dilute suspension of elongated particles by pure straining motion. J Fluid Mech 46:813–829

    Article  Google Scholar 

  • Bot ETG, Hulsen MA, Van den Brule BHAA (1998) The motion of two spheres falling along their line of centres in a Boger fluid. J Non-Newton Fluid 79:191–212

    Article  CAS  Google Scholar 

  • Chauvetau G (1982) Rodlike polymer solution flow through fine pores: influence of pore size on rheological behavior. J Rheol 26:111–142

    Article  Google Scholar 

  • Chen S, Rothstein JP (2004) Flow of a wormlike micelle solution past a falling sphere. J Non-Newton Fluid 116:205–234

    Article  CAS  Google Scholar 

  • Chan RC, Gupta RK, Sridhar T (1988) Fiber spinning of very dilute solutions of polyacrylamide in water. J Non-Newton Fluid 30:267–283

    Article  CAS  Google Scholar 

  • Chhabra RP, Comiti J, Machač I (2001) Flow of non-Newtonian fluids in fixed and fluidised beds. Chem Eng Sci 56:1–27

    Article  CAS  Google Scholar 

  • Clarke A, Howe AM, Mitchell J et al (2015) Mechanism of anomalously increased oil displacement with aqueous viscoelastic polymer solutions. Soft Matter 11:3536–3541

    Article  CAS  Google Scholar 

  • de Castro AR, Radilla G (2017) Non-Darcian flow of shear-thinning fluids through packed beads: experiments and predictions using Forchheimer’s law and Ergun’s equation. Adv Water Resour 100:35–47

    Article  Google Scholar 

  • Dehghanpour H, Kuru E (2011) Effect of viscoelasticity on the filtration loss characteristics of aqueous polymer solutions. J Petrol Sci Eng 76:12–20

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Dontula P, Pasquali M, Scriven LE et al (1997) Can extensional viscosity be measured with opposed-nozzle devices? Rheol Acta 36:429–448

    Article  CAS  Google Scholar 

  • Duda JL, Hong SA, Klaus EE (1983) Flow of polymer solutions in porous media: inadequacy of the capillary model. Ind Eng Chem Fund 22:299–305

    Article  CAS  Google Scholar 

  • Durst F, Haas R (1988) Die Charakterisierung viskoelastischer fluide mit hiife ihrer Strömungseigenschaften in Kugeischüttungen. Rheol Acta 21:150–166

    Google Scholar 

  • Elata C, Burger J, Michlin J et al (1977) Dilute polymer solutions in elongational flow. Phys Fluids 20:49–54

    Article  Google Scholar 

  • Ergun S, Orning AA (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94

    CAS  Google Scholar 

  • Ferguson J, Hudson NE, Odriozola MA (1997) The interpretation of transient extensional viscosity data. J Non-Newton Fluid 68:241–257

    Article  CAS  Google Scholar 

  • Ferguson J, Kembłowski Z (1991) Applied fluid rheology. Elsevier Applied Science, New York, London

    Google Scholar 

  • Fuller GG, Leal LG (1980) Flow birefringence of dilute polymer solutions in two-dimensional flows. Rheol Acta 19:580–600

    Article  CAS  Google Scholar 

  • Gauri V, Koelling KW (1997) Extensional rheology of concentrated poly(ethylene oxide) solutions. Rheol Acta 36:555–567

    Article  CAS  Google Scholar 

  • Ghoniem SAA (1985) Extensional flow of polymer solutions through porous media. Rheol Acta 24:588–595

    Article  CAS  Google Scholar 

  • González JM, Müller AJ, Torres MF et al (2005) The role of shear and elongation in the flow of solutions of semi-flexible polymers through porous media. Rheol Acta 44:396–405

    Article  Google Scholar 

  • Groisman A, Steinberg V (2000) Elastic turbulence in a polymer solution flow. Nature 405:53–55

    Article  CAS  Google Scholar 

  • Haas R, Kulicke WM (1984) In: Gampert B (ed) The influence of polymer additives on velocity and temperature fields. Springer, Berlin, New York, pp 119–129

    Google Scholar 

  • Hassanizadeh SM, Gray WG (1987) High velocity flow in porous media. Transp Porous Med 2:521–531

    Article  CAS  Google Scholar 

  • Hinch EJ (1977) Mechanical models of dilute polymer solutions in strong flows. Phys Fluids 20:S22–S30

    Article  CAS  Google Scholar 

  • Holdich RG (2002) Fluid flow in porous media. Fundamentals of particle technology. Loughborough, UK, pp 21–28

    Google Scholar 

  • Howe AM, Clarke A, Giernalczyk D (2015) Flow of concentrated viscoelastic polymer solutions in porous media: effect of MW and concentration on elastic turbulence onset in various geometries. Soft Matter 11:6419–6431

    Article  CAS  Google Scholar 

  • Huang Y, Sorbie KS (1993) Scleroglucan behavior in flow through porous media: comparison of adsorption and in-situ rheology with xanthan. In: SPE international symposium on oilfield chemistry, New Orleans, Louisiana, Mar 1993, Society of Petroleum Engineer (SPE), p 223

    Google Scholar 

  • Hudson NE, Ferguson J, Warren BCH (1988) Polymer complexation effects in extensional flows. J Non-Newton Fluid 30:251–266

    Article  CAS  Google Scholar 

  • Jones DM, Walters K, Williams PR (1987) On the extensional viscosity of mobile polymer systems. Rheol Acta 26:20–30

    Article  CAS  Google Scholar 

  • Kaur N, Singh R, Wanchoo RK (2011) Flow of Newtonian and non-Newtonian fluids through packed beds: an experimental study. Transp Porous Med 90:655–671

    Article  CAS  Google Scholar 

  • Kennedy JC, Meadows J, Williams PA (1995) Shear and extensional viscosity characteristics of a series of hydrophobically associating polyelectrolytes. J Chem Soc Faraday Trans 91(5):911–916

    Article  CAS  Google Scholar 

  • Kulicke WM, Haas R (1984) Flow behavior of dilute polyacrylamide solutions through porous media. 1. Influence of chain length, concentration, and thermodynamic quality of the solvent. Ind Eng Chem Fundam 23(3):308–315

    Google Scholar 

  • Macdonald IF, El-Sayed MS, Mow K et al (1979) Flow through porous media the Ergun equation revisited. Ind Eng Chem Fund 18:199–215

    Article  CAS  Google Scholar 

  • Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37:3934–3942

    Article  CAS  Google Scholar 

  • Müller AJ, Sáez AE (1999) The rheology of polymer solutions in porous media. In: Flexible polymer chains in elongational flow. Theory and experiment. Springer, Berlin, pp 335–393

    Google Scholar 

  • Müller AJ, Torres MF, Sáez AE (2004) Effect of the flow field on the rheological behavior of aqueous cetyltrimethylammonium p-toluenesulfonate solutions. Langmuir 20:3838–3841

    Article  Google Scholar 

  • Ochowiak M, Broniarz-Press L, Rozanska S, Rozanski J (2012) The effect of extensional viscosity on the effervescent atomization of polyacrylamide solutions. J Ind Eng Chem 18:2028–2035

    Article  CAS  Google Scholar 

  • Odell JA, Miller AJ, Keller A (1988) Non-Newtonian behaviour of hydrolysed polyacrylamide in strong elongational flows: a transient network approach. Polymer 29:179–1190

    Article  Google Scholar 

  • Patruyo JG, Müller AJ, Sáez AE (2002) Shear and extensional rheology of solutions of modified hydroxyethyl celluloses and sodium dodecyl sulfate. Polymer 43:6481–6493

    Article  CAS  Google Scholar 

  • Perrin CL, Tardy PMJ, Sorbie KS et al (2006) Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micro models. J Colloid Interface Sci 295(2):542–550

    Article  CAS  Google Scholar 

  • Petrie ChJS (2006) Extensional viscosity: a critical discussion. J Non-Newton Fluid 137:15–23

    Article  CAS  Google Scholar 

  • Prokop A, Hunkeler D, DiMari S et al (2008) Water soluble polymers for immunoisolation II. Complex coacervation and cytotoxicity. In: Advances in polymer science, vol 136. Springer, Berlin, pp 1–51

    Google Scholar 

  • Rojas MR, Müller AJ, Sáez AE (2008) Shear rheology and porous media flow of wormlike micelle solutions formed by mixtures of surfactants of opposite charge. J Colloid Interface Sci 326:221–226

    Article  CAS  Google Scholar 

  • Rodriguez S, Romero C, Sargenti ML et al (1993) Flow of polymer solutions through porous media. J Non-Newton Fluid 49:63–85

    Article  CAS  Google Scholar 

  • Różańska (2015) Rheological properties of aqueous solutions of polyacrylamide and hydroxyethylcellulose in extensional and shear flow. Polymers 60(10):57–63

    Google Scholar 

  • Różańska S, Broniarz-Press L, Różański J et al (2012) Extensional viscosity and stability of oil-in-water emulsions with addition poly(ethylene oxide). Proc Eng 42:799–807

    Google Scholar 

  • Różańska S, Różański J (2017) Extensional flow of carboxymethylcellulose sodium salt measured on the opposed-nozzle device. Soft Mater 4:302–314

    Google Scholar 

  • Sáez AE, Müller AJ, Odell JA (1994) Flow of monodisperse polystyrene solutions through porous media. Colloid Polym Sci 272:1224–1233

    Article  Google Scholar 

  • Sadowski TJ (1963) Non-Newtonian flow through porous media. PhD thesis, University of Wisconsin, Madison

    Google Scholar 

  • Sargenti ML, Müller AJ, Sáez AE (1999) Adopted from the rheology of polymer solutions in porous media. In: Nguyen, TQ, Kausch HH (eds), Flexible chain dynamics in elongational flows: theory and experiments. Springer, Berlin, p 340

    Google Scholar 

  • Scheidegger AE (1974) The physics of flow through porous media, 3rd edn. University of Toronto Press, pp 152–170

    Google Scholar 

  • Sochi T (2010) Non-Newtonian flow in porous media. Polymer 51:5007–5023

    Article  CAS  Google Scholar 

  • Sorbie KS, Huang Y (1991) Rheological and transport effects in the flow of low-concentration xanthan solution through porous media. J Colloid Interface Sci 145:74–89

    Article  CAS  Google Scholar 

  • Tatham JP, Carrington S, Odell JA et al (1995) Extensional behavior of hydroxypropyl guar solutions: optical rheometry in opposed jets and flow through porous media. J Rheol 39(5):961–986

    Article  CAS  Google Scholar 

  • Trouton FT (1906) On the coefficient of viscous traction and its relation to that of viscosity. Proc R Soc London A Math 77:426–440

    Article  Google Scholar 

  • Xu P, Yu B (2008) Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Adv Water Resour 31:74–81

    Article  CAS  Google Scholar 

  • Zhang L, Wang J, Zhang Y et al (2016) Rheological behavior of hydrolyzed polyacrylamide solution flowing through a molecular weight adjusting device with porous medium. Chin J Chem Eng 24:581–587

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by PUT research grant No. 03/32/DSPB/0702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Różańska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Różańska, S. (2018). Extensional Flow of Polymer Solutions Through the Porous Media. In: Ochowiak, M., Woziwodzki, S., Doligalski, M., Mitkowski, P. (eds) Practical Aspects of Chemical Engineering. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73978-6_26

Download citation

Publish with us

Policies and ethics