Skip to main content

Supercritical Fluids in Green Technologies

  • Conference paper
  • First Online:
Practical Aspects of Chemical Engineering

Abstract

Supercritical fluid technologies offer the possibility to obtain new products with special characteristics or to design new processes, which are environmentally friendly and sustainable. By using supercritical fluids as the processing media, one can also avoid the problem of solvent residues and restrictions on the use of conventional organic solvents in industrial technologies. In this overview some novel applications of supercritical fluids are presented and the future expected development in the field of high pressure green technologies is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn Y, Jun Baea S, Minseok K et al (2015) Review of supercritical CO2 power cycle technology and current status of research and development. Nucl Eng Technol 47:647–661

    Article  CAS  Google Scholar 

  • Anastas PT (2002) Green chemistry as applied to solvents. Clean Solvents 819:1–9

    Article  CAS  Google Scholar 

  • Anastas PT, Warner JC (1998) green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Anastas PT, Zimmermann JB (2003) Design through the 12 principles of green engineering. Environ Sci Technol 37:94a–101a

    Article  Google Scholar 

  • Aydin HM, El Haj AJ, PiƟkin E et al (2009) Improving pore interconnectivity in polymeric scaffolds for tissue engineering. J Tissue Eng Regener Med 3(6):470–476

    Article  CAS  Google Scholar 

  • Baldino L, Cardea S, Reverchon E (2016) Production of antimicrobial membranes loaded with potassium sorbate using a supercritical phase separation process. Innov Food Sci Emerg 34:77–85

    Article  CAS  Google Scholar 

  • Berghmans S, Berghmans H, Meijer HEH (1996) Spinning of hollow porous fibres via the TIPS mechanism. J Membr Sci 116(2):171–189

    Article  CAS  Google Scholar 

  • Chung C, Kim YK, Shin D et al (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46(10):2211–2224

    Article  CAS  Google Scholar 

  • Collins NJ, Bridson RH, Leeke GA et al (2010) Particle seeding enhances interconnectivity in polymeric scaffolds foamed using supercritical CO2. Acta Biomater 6(3):1055–1060

    Article  CAS  Google Scholar 

  • Dhillon GS, Brar SK, Verma M et al (2011) Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol 4:505–529

    Article  CAS  Google Scholar 

  • Diaz-Gomez L, Concheiro A, Alvarez-Lorenzo C et al (2016) Growth factors delivery from hybrid PCL-starch scaffolds processed using supercritical fluid technology. Carbohydr Polym 142:282–292

    Article  CAS  Google Scholar 

  • Djas M, Henczka M (2016) Reactive extraction of citric acid using supercritical carbon dioxide. J Supercrit Fluids 117:59–63

    Article  CAS  Google Scholar 

  • Henczka M, Djas M (2016) Reactive extraction of acetic acid and propionic acid using supercritical carbon dioxide. J Supercit Fluids 110:154–160

    Article  CAS  Google Scholar 

  • Knez Z, Markocic E, Leitgeb M et al (2014) Industrial applications of supercritical fluids: a review. Energy 77:235–243

    Article  CAS  Google Scholar 

  • Krzysztoforski J (2016) Transport phenomena in the process of porous membrane cleaning using supercritical fluids. PhD Dissertation. Warsaw University of Technology, Poland

    Google Scholar 

  • Krzysztoforski J, KrasiƄski A, Henczka M et al (2013) Enhancement of supercritical fluid extraction in membrane cleaning process by addition of organic solvents. Chem Process Eng 34(3):403–414

    Article  CAS  Google Scholar 

  • Kurzrock T, Weuster-Botz D (2010) Recovery of succinic acid from fermentation broth. Biotech Lett 32:331–339

    Article  CAS  Google Scholar 

  • Li Z, Tang H, Liu X et al (2007) Preparation and characterization of microporous poly(vinyl butyral) membranes by supercritical CO2-induced phase separation. J Membr Sci 312(1–2):115–124

    Google Scholar 

  • Li Q-Z, Jiang X-L, Feng X-J et al (2016) Recovery processes of organic acids from fermentation broths in the biomass-based industry. J Microbiol Biotechnol 26(1):1–8

    Article  Google Scholar 

  • Liao X, Zhang H, He T (2012) Preparation of porous biodegradable polymer and its nanocomposites by supercritical CO2 foaming for tissue engineering. J Nanomater 2012:1–12

    Article  Google Scholar 

  • Liu L, Zhu Y, Li JH et al (2012) Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives. Crit Rev Biotechnol 32:374–381

    Article  CAS  Google Scholar 

  • Lohaus T, Scholz M, Koziara BT et al (2015) Drying of supercritical carbon dioxide with membrane processes. J Supercrit Fluid 98:137–146

    Article  CAS  Google Scholar 

  • LĂłpez-GarzĂłn CS, Straathof AJJ (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol Adv 32:873–904

    Article  Google Scholar 

  • MichaƂek K, Krzysztoforski J, Henczka M et al (2015) Cleaning of microfiltration membranes from industrial contaminants using “greener” alternatives in a continuous mode. J Supercrit Fluid 102:115–122

    Article  Google Scholar 

  • Miramini SA, Razavi SMR, Ghadiri M et al (2013) CFD simulation of acetone separation from an aqueous solution using supercritical fluid in a hollow-fiber membrane contactor. Chem Eng Process 72:130–136

    Article  CAS  Google Scholar 

  • Nofar M (2016) Effects of nano-/micro-sized additives and the corresponding induced crystallinity on the extrusion foaming behavior of PLA using supercritical CO2. Mat Des 101:24–34

    CAS  Google Scholar 

  • Soccol CR, Vandenberghe LPS, Rodrigues C et al (2006) New perspectives for citric acid production and application. Food Technol Biotechnol 44:141–149

    CAS  Google Scholar 

  • Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzyme Microbial Technol 39:352–361

    Article  CAS  Google Scholar 

  • Straathof AJJ (2011) The proportion of downstream costs in fermentative production processes in book: comprehensive biotechnology. Elsevier, pp 811–814

    Google Scholar 

  • Tamada JA, Kertes AS, King CJ (1990) Extraction of carboxylic acids with amine extractants. 1. Equilibria and law of mass action modelling. Ind Eng Chem Res 29:1319–1326

    Article  CAS  Google Scholar 

  • Tarabasz K, Krzysztoforski J, Szwast M et al (2016) Investigation of the effect of treatment with supercritical carbon dioxide on structure and properties of polypropylene microfiltration membranes. Mater Lett 163:54–57

    Article  CAS  Google Scholar 

  • Tomasko LD, Liu H, Li D et al (2003) A review of CO2 applications in the processing of polymers. Ind Eng Chem Res 42:6431–6456

    Article  CAS  Google Scholar 

  • Wang Y, Liu Z, Han B et al (2004) pH sensitive polypropylene porous membrane prepared by grafting acrylic acid in supercritical carbon dioxide. Polym 45(3):855–860

    Article  CAS  Google Scholar 

  • Wasewar KL (2012) Reactive extraction: an intensifying approach for carboxylic acid separation. Int J Chem Eng Appl 3:249–255

    CAS  Google Scholar 

  • Wu D, Meng Q (2004) A study of bubble inflations in polymer and its applications. Phys Lett A 327:61–66

    Article  Google Scholar 

  • Xinli Z, Xiaoling H, Ping G et al (2009) Preparation and pore structure of porous membrane by supercritical fluid. J Supercrit Fluid 49(1):111–116

    Article  Google Scholar 

  • Yoganathan RB, Mammucari R, Foster NR (2010) Dense gas processing of polymers. Polym Rev 50(2):144–177

    Article  CAS  Google Scholar 

  • Zhang CF, Zhu BK, Ji GL et al (2007) Supercritical carbon dioxide extraction in membrane formation by thermally induced phase separation. J Appl Polym Sci 103(3):1632–1639

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research financed by the National Science Centre, Poland, Project No. 2014/15/N/ST8/01516.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Henczka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Henczka, M., Djas, M., Krzysztoforski, J. (2018). Supercritical Fluids in Green Technologies. In: Ochowiak, M., Woziwodzki, S., Doligalski, M., Mitkowski, P. (eds) Practical Aspects of Chemical Engineering. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73978-6_10

Download citation

Publish with us

Policies and ethics