Skip to main content

System Biology, Metabolomics, and Breast Cancer: Where We Are and What Are the Possible Consequences on the Clinical Setting

  • Chapter
  • First Online:
Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues

Abstract

The discovery that the metabolism of cancer cells is different from non-malignant cells is not new, this finding was described more than a century ago by O. Warburg. Nevertheless, in the last decade the technologies such as capillary electrophoresis, mass spectroscopy (MS), and proton nuclear magnetic resonance spectroscopy (H-NMR) have allowed deciphering the complexity and heterogeneity underlying the cancer metabolism. These high-performance technologies are generating a large amount of data that requires conceptual schemes and approaches to efficiently extract and physiologically interpret the dynamic spectrum of the metabolome data in cancer samples. Breast cancer is a disease that highlights the need to develop computational schemes to systematically explore the metabolic alterations that support the malignant phenotype in human cells. Hence, systems biology approaches with capacities to integrate in silico modeling and high-throughput data are very attractive for clinicians to make oncological treatment decisions combined with static parameters such as clinical and histopathological variables. In this chapter we present a cutting-edge review, perspectives and scope of how metabolic approaches in breast cancer studies can be used not only to integrate the local and systemic response of the host, but also as a technique to look for metabolic biomarkers by non-invasive and simpler sample procedure in biofluids such as serum, saliva, urine, pleural fluid, breath, and ascites. We discuss how the “metabolic phenotype” approach could contribute to developing a personalized medicine by combining metabolome data and computational modeling to evaluate some clinical variables such as detection of relapses, monitoring and response prediction to treatment and toxicity prediction in patients. Even though some advances have been accomplished, in practice there are many challenges and limits that will have to be broken before the metabolomics can be integrated into the day-to-day clinic. Despite this situation, it is evident that the translational multidisciplinary approach combined with the rapid technological development and the correct data interpretation will bring in the future tools for improving outcomes in the clinical area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

Advanced breast cancer

AUC:

Area under curve

AUROC:

Area under the receiver operating characteristic curve

CE-TOF/MS:

Capillary electrophoresis time-of-flight mass spectrometry

CE:

Capillary electrophoresis

EBC:

Early breast cancer

GC-MS:

Gas chromatography-mass spectroscopy

HER2:

Human epidermal growth factor receptor 2

H-NMR:

Proton nuclear magnetic resonance spectroscopy

HR-MAS:

High resolution magic angle spinning magnetic resonance spectrometry

LBC:

Localized breast cancer

LC-MS:

Liquid chromatography-mass spectroscopy

LTNBC:

Localized triple negative breast cancer

LTPBC:

Localized triple positive breast cancer

MS:

Mass spectroscopy

NMR:

Nuclear magnetic resonance spectroscopy

no pCR:

No pathologic complete response

OPLS-DA:

Orthogonal least-squares discriminant analysis

OS:

Overall survival

pCR:

Pathologic complete response

PLS-DA:

Partial least squares discriminant analysis

TNBC:

Triple negative breast cancer

TNMc:

Clinical tumor/nodes/metastasis

TNMp:

Pathological tumor/nodes/metastasis

TPBC:

Triple positive breast cancer

TT:

Treatment toxicity

TTP:

Time to disease progression

References

  1. Resendis-Antonio O, González-Torres C, Jaime-Muñoz G, Hernandez-Patiño CE, Salgado-Muñoz CF (2015) Modeling metabolism: a window toward a comprehensive interpretation of networks in cancer. Semin Cancer Biol 30:79–87

    Article  CAS  PubMed  Google Scholar 

  2. Rajagopalan KN, DeBerardinis RJ (2011) Role of glutamine in cancer: therapeutic and imaging implications. J Nucl Med 52:1005–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18:54–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang L, Venneti S, Nagrath D (2017) Glutaminolysis: a hallmark of cancer metabolism. Annu Rev Biomed Eng 19:163–194

    Article  CAS  PubMed  Google Scholar 

  6. Resendis-Antonio O, Checa A, Encarnación S (2010) Modeling core metabolism in cancer cells: surveying the topology underlying the Warburg effect. PLoS One 5:e12383

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hernández Patiño CE, Jaime-Muñoz G, Resendis-Antonio O (2012) Systems biology of cancer: moving toward the integrative study of the metabolic alterations in cancer cells. Front Physiol 3:481

    PubMed  Google Scholar 

  8. McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–628

    Article  CAS  PubMed  Google Scholar 

  9. Ishikawa S, Sugimoto M, Kitabatake K, Sugano A, Nakamura M, Kaneko M et al (2016) Identification of salivary metabolomic biomarkers for oral cancer screening. Sci Rep 6:31520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ocana A, Pandiella A (2010) Personalized therapies in the cancer “omics” era. Mol Cancer 9:202

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  Google Scholar 

  12. Claudino WM, Goncalves PH, di Leo A, Philip PA, Sarkar FH (2012) Metabolomics in cancer: a bench-to-bedside inter\ion. Crit Rev Oncol Hematol 84:1–7

    Article  PubMed  Google Scholar 

  13. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s achilles’ heel. Cancer Cell 13:472–482

    Article  CAS  PubMed  Google Scholar 

  14. Wu H, Xue R, Tang Z, Deng C, Liu T, Zeng H et al (2010) Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. Anal Bioanal Chem 396:1385–1395

    Article  CAS  PubMed  Google Scholar 

  15. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. OuYang D, Xu J, Huang H, Chen Z (2011) Metabolomic profiling of serum from human pancreatic cancer patients using 1H NMR spectroscopy and principal component analysis. Appl Biochem Biotechnol 165:148–154

    Article  PubMed  Google Scholar 

  17. Slupsky CM, Steed H, Wells TH, Dabbs K, Schepansky A, Capstick V et al (2010) Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin Cancer Res 16:5835–5841

    Article  CAS  PubMed  Google Scholar 

  18. Denkert C, Bucher E, Hilvo M, Salek R, Orešič M, Griffin J et al (2012) Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery. Genome Med 4:37

    CAS  PubMed  PubMed Central  Google Scholar 

  19. METAcancer: home [Internet]. [cited 10 Jul 2017]. http://www.METACANCER-fp7.eu

  20. Zhou J, Wang Y, Zhang X (2017) Metabonomics studies on serum and urine of patients with breast cancer using 1H-NMR spectroscopy. Oncotarget. https://doi.org/10.18632/oncotarget.16210

  21. Oakman C, Tenori L, Claudino WM, Cappadona S, Nepi S, Battaglia A et al (2011) Identification of a serum-detectable metabolomic fingerprint potentially correlated with the presence of micrometastatic disease in early breast cancer patients at varying risks of disease relapse by traditional prognostic methods. Ann Oncol 22:1295–1301

    Article  CAS  PubMed  Google Scholar 

  22. Jobard E, Pontoizeau C, Blaise BJ, Bachelot T, Elena-Herrmann B, Trédan OA (2014) Serum nuclear magnetic resonance-based metabolomic signature of advanced metastatic human breast cancer. Cancer Lett 343:33–41

    Article  CAS  PubMed  Google Scholar 

  23. Tenori L, Oakman C, Morris PG, Gralka E, Turner N, Cappadona S et al (2015) Serum metabolomic profiles evaluated after surgery may identify patients with oestrogen receptor negative early breast cancer at increased risk of disease recurrence. Results from a retrospective study. Mol Oncol 9:128–139

    Article  CAS  PubMed  Google Scholar 

  24. Hadi NI, Jamal Q, Iqbal A, Shaikh F, Somroo S, Musharraf SG (2017) Serum Metabolomic profiles for breast cancer diagnosis, grading and staging by gas chromatography-mass spectrometry. Sci Rep 7(1):1715. https://doi.org/10.1038/s41598-017-01924-9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Borgan E, Sitter B, Lingjærde OC, Johnsen H, Lundgren S, Bathen TF et al (2010) Merging transcriptomics and metabolomics–advances in breast cancer profiling. BMC Cancer 10:628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cao MD, Lamichhane S, Lundgren S, Bofin A, Fjøsne H, Giskeødegård GF et al (2014) Metabolic characterization of triple negative breast cancer. BMC Cancer 14:941

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goode G, Gunda V, Chaika NV, Purohit V, Yu F, Singh PK (2017) MUC1 facilitates metabolomic reprogramming in triple-negative breast cancer. PLoS One 12:e0176820

    Article  PubMed  PubMed Central  Google Scholar 

  28. Damia G, Broggini M, Marsoni S, Venturini S, Generali D (2011) New omics information for clinical trial utility in the primary setting. J Natl Cancer Inst Monogr 2011:128–133

    Article  PubMed  Google Scholar 

  29. Wei S, Liu L, Zhang J, Bowers J, Gowda GAN, Seeger H et al (2013) Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer. Mol Oncol 7:297–307

    Article  CAS  PubMed  Google Scholar 

  30. Ebbels TMD, Keun HC, Beckonert OP, Bollard ME, Lindon JC, Holmes E et al (2007) Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data: the consortium on metabonomic toxicology screening approach. J Proteome Res 6:4407–4422

    Article  CAS  PubMed  Google Scholar 

  31. Tenori L, Oakman C, Claudino WM, Bernini P, Cappadona S, Nepi S et al (2012) Exploration of serum metabolomic profiles and outcomes in women with metastatic breast cancer: a pilot study. Mol Oncol 6:437–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ebrahim A, Brunk E, Tan J, O’Brien EJ, Kim D, Szubin R et al (2016) Multi-omic data integration enables discovery of hidden biological regularities. Nat Commun 7:13091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zielinski DC, Jamshidi N, Corbett AJ, Bordbar A, Thomas A, Palsson BO (2017) Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci Rep 7:41241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bordbar A, Yurkovich JT, Paglia G, Rolfsson O, Sigurjónsson ÓE, Palsson BO (2017) Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci Rep 7:46249

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yurkovich JT, Yang L, Palsson BO (2017) Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells. PLoS Comput Biol 13:e1005424

    Article  PubMed  PubMed Central  Google Scholar 

  36. Diener C, Muñoz-Gonzalez F, Encarnación S, Resendis-Antonio O (2016) The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome. Sci Rep 6:28415

    Article  PubMed  PubMed Central  Google Scholar 

  37. Locasale JW, Vander Heiden MG, Cantley LC (2010) Rewiring of glycolysis in cancer cell metabolism. Cell Cycle 9:4253–4253

    Article  CAS  PubMed  Google Scholar 

  38. Famili I, Mahadevan R, Palsson BO (2005) K-cone analysis: determining all candidate values for kinetic parameters on a network scale. Biophys J 88:1616–1625

    Article  CAS  PubMed  Google Scholar 

  39. López-Moyado IF, Resendis-Antonio O (2013) Dynamic metabolic networks, k-cone. In: Encyclopedia of system biology. Springer, New York, pp 624–629

    Chapter  Google Scholar 

  40. Resendis-Antonio O (2009) Filling kinetic gaps: dynamic modeling of metabolism where detailed kinetic information is lacking. PLoS One 4:e4967

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA et al (2012) Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337:975–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Webb BA, Forouhar F, Szu F-E, Seetharaman J, Tong L, Barber DL (2015) Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations. Nature 523:111–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    Article  CAS  PubMed  Google Scholar 

  44. Chan B, VanderLaan PA, Sukhatme VP (2013) 6-Phosphogluconate dehydrogenase regulates tumor cell migration in vitro by regulating receptor tyrosine kinase c-met. Biochem Biophys Res Commun 439:247–251

    Article  CAS  PubMed  Google Scholar 

  45. Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D et al (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329:1492–1499

    Article  CAS  PubMed  Google Scholar 

  46. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  CAS  PubMed  Google Scholar 

  47. Zepeda-Mendoza ML, Resendis-Antonio O (2013) Hierarchical agglomerative clustering. In: Encyclopedia of systems biology. Springer, New York, pp 886–887

    Chapter  Google Scholar 

  48. Resendis-Antonio O, Hernández M, Mora Y, Encarnación S (2012) Functional modules, structural topology, and optimal activity in metabolic networks. PLoS Comput Biol 8:e1002720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kitano H (2004) Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4:227–235

    Article  CAS  PubMed  Google Scholar 

  50. Diener C, Resendis-Antonio O (2016) Personalized prediction of proliferation rates and metabolic liabilities in cancer biopsies. Front Physiol 7:644

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This paper was supported by an internal grant from the Instituto Nacional de Medicina Genomica, Mexico. Meztli L. Matadamas-Guzman is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autonoma de México (UNAM) and received fellowship 595252 from CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osbaldo Resendis-Antonio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Armengol-Alonso, A., Matadamas-Guzman, M.L., Resendis-Antonio, O. (2018). System Biology, Metabolomics, and Breast Cancer: Where We Are and What Are the Possible Consequences on the Clinical Setting. In: Olivares-Quiroz, L., Resendis-Antonio, O. (eds) Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues. Springer, Cham. https://doi.org/10.1007/978-3-319-73975-5_9

Download citation

Publish with us

Policies and ethics