Skip to main content

An Agent-Based Model to Study Selection of Pseudomonas aeruginosa Quorum Sensing by Pyocyanin: A Multidisciplinary Perspective on Bacterial Communication

  • Chapter
  • First Online:
Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues

Abstract

Although bacteria are unicellular organisms, they use a sophisticated mechanism to cooperate with other bacteria which allows them to carry out multicellular-like processes, such as swarming, biofilm formation, induce infections, luminescence, etc. This mechanism is known as quorum sensing (QS) and it functions through the individual release, diffusion and collective sensing of small molecules, called autoinducers, which under their accumulation lead to changes in gene regulation. A range of approaches have been used to study the complex way in which QS works, these tools combine biology, physics, and mathematics. We discuss here how a multidisciplinary perspective is ideal to study QS and present an example of QS in Pseudomonas aeruginosa, a human pathogen. In this bacterial species, QS coordinates the expression of virulence factors, that are public goods utilized by the whole population of bacteria regardless if they invested or not in their production. Hence, public good production is a cooperative behavior, susceptible to be exploited by non-public good producers, known as social cheaters. These individuals, which are QS-deficient, are also less able to tolerate oxidative stress. Our group has shown that pyocyanin (which promotes the generation of reactive oxygen species) produced by the wild-type population may work as a policing mechanism to select functional QS systems in this bacterium. Using an agent-based model (ABM) we are able to confirm that indeed this compound increases the fitness of the cooperative QS proficient individuals. We further explore, with the ABM, how the bacterial environment diffusion properties may be contributing to stabilize QS in certain growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Popat R, Cornforth DM, Mcnally L, Brown SP (2015) Collective sensing and collective responses in quorum-sensing bacteria. J R Soc Interface 12(103):20140882

    Article  PubMed  PubMed Central  Google Scholar 

  2. Diggle SP, Griffin AS, Campbell GS, West SA (2007) Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411–414

    Article  CAS  PubMed  Google Scholar 

  3. Chuang JS, Rivoire O, Leibler S (2009) Simpson’s paradox in a synthetic microbial system. Science 323:272–275

    Article  CAS  PubMed  Google Scholar 

  4. Hense BA, Schuster M (2015) Core principles of bacterial autoinducer systems. Microbiol Mol Biol Rev 79(1):153–169

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kummerli R, Griffin AS, West SA, Buckling A, Harrison F (2009) Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proc Biol Sci 276:3531–3538

    Article  PubMed  PubMed Central  Google Scholar 

  6. García-Contreras R, Nuñez-López L, Jasso-Chávez R, Kwan BW, Belmont JA, Rangel-Vega A, Maeda T, Wood (2015) Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME J 9(1):115–125

    Article  PubMed  Google Scholar 

  7. García-Contreras R, Peréz-Eretza B, Jasso-Chávez R, Lira-Silva E, Roldán-Sánchez JA, González-Valdez A, Soberón-Chávez G, Coria-Jiménez R, Martínez-Vázquez M, Alcaraz LD, Maeda T, Wood TK (2015) High variability in quorum quenching and growth inhibition by furanone C-30 in Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. Pathog Dis 73(6):ftv040

    Article  PubMed  Google Scholar 

  8. Wang M, Schaefer AL, Dandekar AA, Greenberg EP (2015) Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc Natl Acad Sci U S A 112:2187–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leto BR, Thomas L (2013) Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol 21(2):73–81

    Article  PubMed  Google Scholar 

  10. Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61(5):1308–1321

    Article  CAS  PubMed  Google Scholar 

  11. Schaber JA, Carty NL, McDonald NA, Graham ED, Cheluvappa R, Griswold JA, Hamood AN (2004) Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 53:841–853

    Article  CAS  PubMed  Google Scholar 

  12. Grosso-Becerra M-V, Santos-Medellín C, González-Valdez A, Méndez J-L, Delgado G, Morales-Espinosa R, Servín-González L, Alcaraz L-D, Soberón-Chávez G (2014) Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 28(5):318

    Article  Google Scholar 

  13. Caldwell CC, Chen Y, Goetzmann HS, Hao Y, Borchers MT, Hassett DJ, Young LR, Mavrodi D, Thomashow L, Lau GW (2009) Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol 175(6):2473–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davenport PW, Griffin JL, Welch M (2015) Quorum sensing is accompanied by global metabolic changes in the opportunistic human pathogen Pseudomonas aeruginosa. J Bacteriol 197(12):2072–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Castañeda-Tamez P, Saucedo-Mora MÁ, Pérez-Velázquez J, Hense BA, Kuttler C, Jalalimanesh A, Maeda T, Pérez-Eretza B, Tomás M, Wood TK, García-Contreras R (2018) Selection of Pseudomonas aeruginosa quorum sensing by pyocyanin. In revision.

    Google Scholar 

  16. Pérez-Velázquez J, Hense B (2017) Differential equations models to study quorum sensing. In: Leoni L, Rampioni G (eds) Quorum sensing: methods and protocols. Humana Press, New York

    Google Scholar 

  17. Fekete A, Kuttler C, Rothballer M, Hense BA, Fischer D, Buddrus-Schiemann K, Lucio M, Müller J, Schmitt-Kopplin P, Hartmann A (2010) Dynamic regulation of n-acyl-homoserine lactone production and degradation in Pseudomonas putida ISOF. FEMS Microbiol Ecol 72:22–34

    Article  CAS  PubMed  Google Scholar 

  18. Kuttler C, Hense BA (2008) Interplay of two quorum sensing regulation systems of Vibrio fischeri. J Theor Biol 251:167–180

    Article  PubMed  Google Scholar 

  19. Müller J, Kuttler C, Hense BA, Rothballer M, Hartmann A (2006) Cell-cell communication by quorum sensing and dimension-reduction. J Math Biol 53:672–702

    Article  PubMed  Google Scholar 

  20. Mund et al (2016) An age-dependent model to analyse the evolutionary stability of bacterial quorum sensing. J Theor Biol 405:104–115. https://doi.org/10.1016/j.jtbi.2015.12.021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Pérez-Velázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jalalimanesh, A., Kuttler, C., García-Contreras, R., Pérez-Velázquez, J. (2018). An Agent-Based Model to Study Selection of Pseudomonas aeruginosa Quorum Sensing by Pyocyanin: A Multidisciplinary Perspective on Bacterial Communication. In: Olivares-Quiroz, L., Resendis-Antonio, O. (eds) Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues. Springer, Cham. https://doi.org/10.1007/978-3-319-73975-5_7

Download citation

Publish with us

Policies and ethics