Skip to main content

Abstract

In this contribution chapter, the non-equilibrium nature of active motion is explored in the framework of the Generalized Langevin Equation. The persistence effects that distinguish active motion, observed in a variety of biological organisms and man-made colloidal particles, from the passive one, are put in correspondence with the memory function that characterizes the retarded dissipative effects in the equation. The non-equilibrium aspects of this approach rely on the relaxation of the fluctuation-dissipation relation, that couples the memory function with the autocorrelation function of the fluctuating force in order to describe the equilibrium. In the case of freely diffusing active particles, the Fokker-Planck equation is derived and an effective temperature can be identified if the total overlap between the deterministic solutions of the Generalized Langevin Equation at two times, weighted by the noise correlation function, exists and is finite. Active motion confined by the harmonic, external potential is analyzed on the same framework leading to analogous conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reimann P (2002) Phys Rep 361:57. ISSN 0370-1573. http://www.sciencedirect.com/science/article/pii/S0370157301000813

    Article  CAS  Google Scholar 

  2. Taktikos J, Stark H, Zaburdaev V (2014) PLoS One 8:1. http://dx.doi.org/10.1371%2Fjournal.pone.0081936

    Google Scholar 

  3. Taute KM, Gude S, Tans SJ, Shimizu TS (2015) Nat Commun 6:8776. https://www.nature.com/articles/ncomms9776#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schnitzer MJ (1993) Phys Rev E 48:2553. http://link.aps.org/doi/10.1103/PhysRevE.48.2553

    Article  CAS  Google Scholar 

  5. Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G (2016) Rev Mod Phys 88:045006. https://link.aps.org/doi/10.1103/RevModPhys.88.045006

    Article  Google Scholar 

  6. Gao W, Dong R, Thamphiwatana S, Li J, Gao W, Zhang L, Wang J (2015) ACS Nano 9:117. pMID: 25549040, http://dx.doi.org/10.1021/nn507097k

    Article  CAS  PubMed  Google Scholar 

  7. Ramaswamy S (2010) Annu Rev Condens Matter Phys 1:323. https://doi.org/10.1146/annurev-conmatphys-070909-104101

    Article  Google Scholar 

  8. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, Rao M, Simha RA (2013) Rev Mod Phys 85:1143. https://link.aps.org/doi/10.1103/RevModPhys.85.1143

    Article  CAS  Google Scholar 

  9. Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R (2007) Phys Rev Lett 99:048102

    Article  PubMed  Google Scholar 

  10. Buttinoni I, Volpe G, Kümmel F, Volpe G, Bechinger C (2012) J Phys Condens Matter 24:284129. http://stacks.iop.org/0953-8984/24/i=28/a=284129

    Article  PubMed  Google Scholar 

  11. Takatori SC, Yan W, Brady JF (2014) Phys Rev Lett 113:028103. http://link.aps.org/doi/10.1103/PhysRevLett.113.028103

    Article  CAS  PubMed  Google Scholar 

  12. Ginot F, Theurkauff I, Levis D, Ybert C, Bocquet L, Berthier L, Cottin-Bizonne C (2015) Phys Rev X 5:011004. https://link.aps.org/doi/10.1103/PhysRevX.5.011004

    Google Scholar 

  13. Takatori SC, Brady JF (2015) Phys Rev E 91:032117. http://link.aps.org/doi/10.1103/PhysRevE.91.032117

    Article  CAS  Google Scholar 

  14. Solon AP, Chaté H, Tailleur J (2015) Phys Rev Lett 114:068101. http://link.aps.org/doi/10.1103/PhysRevLett.114.068101

    Article  PubMed  Google Scholar 

  15. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Phys Rev Lett 75:1226

    Article  CAS  PubMed  Google Scholar 

  16. Speck T, Bialké J, Menzel AM, Löwen H (2014) Phys Rev Lett 112:218304. https://link.aps.org/doi/10.1103/PhysRevLett.112.218304

    Article  Google Scholar 

  17. Solon AP, Stenhammar J, Wittkowski R, Kardar M, Kafri Y, Cates ME, Tailleur J (2015) Phys Rev Lett 114:198301. https://link.aps.org/doi/10.1103/PhysRevLett.114.198301

    Article  PubMed  Google Scholar 

  18. Cates ME Tailleur J (2015) Annu Rev Condens Matter Phys 6:219. https://doi.org/10.1146/annurev-conmatphys-031214-014710

    Article  CAS  Google Scholar 

  19. Fodor E, Nardini C, Cates ME, Tailleur J, Visco P, van Wijland F (2016) Phys Rev Lett 117:038103. https://link.aps.org/doi/10.1103/PhysRevLett.117.038103

    Article  PubMed  Google Scholar 

  20. Oukris H, Israeloff NE (2010) Nat Phys 6:135. ISSN 1745-2473. https://doi.org/10.1038/nphys1482

    Article  CAS  Google Scholar 

  21. Colombani J, Petit L, Ybert C, Barentin C (2011) Phys Rev Lett 107:130601. http://link.aps.org/doi/10.1103/PhysRevLett.107.130601

    Article  PubMed  Google Scholar 

  22. Dieterich E, Camunas-Soler J, Ribezzi-Crivellari M, Seifert U, Ritort F (2015) Nat Phys 11:971

    Article  CAS  Google Scholar 

  23. Loi D, Mossa S, Cugliandolo LF (2008) Phys Rev E 77:051111. http://link.aps.org/doi/10.1103/PhysRevE.77.051111

    Article  Google Scholar 

  24. Tailleur J Cates ME (2009) EPL (Europhys Lett) 86:60002. http://stacks.iop.org/0295-5075/86/i=6/a=60002

    Article  Google Scholar 

  25. Palacci J, Cottin-Bizonne C, Ybert C, Bocquet L (2010) Phys Rev Lett 105:088304

    Article  PubMed  Google Scholar 

  26. Enculescu M Stark H (2011) Phys Rev Lett 107:058301. http://link.aps.org/doi/10.1103/PhysRevLett.107.058301

    Article  PubMed  Google Scholar 

  27. Ben-Isaac E, Park Y, Popescu G, Brown FLH, Gov NS, Shokef Y (2011) Phys Rev Lett 106:238103. http://link.aps.org/doi/10.1103/PhysRevLett.106.238103

    Article  PubMed  Google Scholar 

  28. Loi D, Mossa S, Cugliandolo LF (2011) Soft Matter 7:3726. http://dx.doi.org/10.1039/C0SM01484B

    Article  CAS  Google Scholar 

  29. Szamel G (2014) Phys Rev E 90:012111. http://link.aps.org/doi/10.1103/PhysRevE.90.012111.

    Article  Google Scholar 

  30. Levis D Berthier L (2015) EPL (Europhys Lett) 111:60006. http://stacks.iop.org/0295-5075/111/i=6/a=60006

    Article  Google Scholar 

  31. Pototsky A, Stark H (2012) EPL 98:50004

    Article  Google Scholar 

  32. Solon AP, Cates ME, Tailleur J (2015) Eur Phys J Spec Top 224:1231. ISSN 1951-6401. http://dx.doi.org/10.1140/epjst/e2015-02457-0

    Article  CAS  Google Scholar 

  33. Takatori SC, De Dier R, Vermant J, Brady JF (2016) Nat Commun 7:10694. http://www.nature.com/articles/ncomms10694#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miramontes O, DeSouza O, Paiva LR, Marins A, Orozco S (2014) PLoS One 9:e111183

    Article  PubMed  PubMed Central  Google Scholar 

  35. Argun A, Moradi A-R, Pinçe E, Bagci GB, Imparato A, Volpe G (2016) Phys Rev E 94:062150. https://link.aps.org/doi/10.1103/PhysRevE.94.062150

    Article  PubMed  Google Scholar 

  36. Codling EA, Plank MJ, Benhamou S (2008) J R Soc Interface 5:813

    Article  PubMed  PubMed Central  Google Scholar 

  37. Masoliver J, Lindenberg K, Weiss GH (1989) Physica A 157:891

    Article  Google Scholar 

  38. Weiss GH, Rubin RJ (1983) Adv Chem Phys 52:363

    CAS  Google Scholar 

  39. Masoliver J, Lindenberg K (2017) Eur Phys J B 90:107. ISSN 1434-6036. https://doi.org/10.1140/epjb/e2017-80123-7

    Article  Google Scholar 

  40. Kubo R (1966) Rep Prog Phys 29:255. http://stacks.iop.org/0034-4885/29/i=1/a=306

    Article  CAS  Google Scholar 

  41. Mikhailov AS, Zanette DH (1999) Phys Rev E 60:4571. https://link.aps.org/doi/10.1103/PhysRevE.60.4571

    Article  CAS  Google Scholar 

  42. Erdmann U, Ebeling W, Schimansky-Geier L, Schweitzer F (2000) Eur Phys J B 15:105. ISSN 1434-6036. http://dx.doi.org/10.1007/s100510051104

    Article  CAS  Google Scholar 

  43. Chaudhuri D (2014) Phys Rev E 90:022131. https://link.aps.org/doi/10.1103/PhysRevE.90.022131

    Article  Google Scholar 

  44. Marconi UMB, Puglisi A, Rondoni L, Vulpiani A (2008) Phys Rep 461:111. ISSN 0370-1573. http://www.sciencedirect.com/science/article/pii/S0370157308000768

    Article  Google Scholar 

  45. Wang K, Tokuyama M (1999) Physica A 265:341. ISSN 0378-4371. http://www.sciencedirect.com/science/article/pii/S037843719800644X

    Article  Google Scholar 

  46. Despósito MA, Viñales AD (2008) Phys Rev E 77:031123. https://link.aps.org/doi/10.1103/PhysRevE.77.031123

    Article  Google Scholar 

  47. Sandev T, Metzler R, Tomovski ž (2014) J Math Phys 55:023301. http://dx.doi.org/10.1063/1.4863478

  48. Kubo R, Toda M, Hashitsume N (1991) Statistical physics II: nonequilibrium statistical mechanics. Springer series in solid-state sciences, 2nd edn., vol 31. Springer, Berlin. ISBN 978-3-540-53833-2, 978-3-642-58244-8

    Google Scholar 

  49. Adelman SA (1976) J Chem Phys 64:124. http://dx.doi.org/10.1063/1.431961

    Article  CAS  Google Scholar 

  50. Fox RF (1977) J Math Phys 18:2331. http://dx.doi.org/10.1063/1.523242

    Article  Google Scholar 

  51. Fox RF (1978) Phys Rep 48:179. ISSN 0370-1573. http://www.sciencedirect.com/science/article/pii/037015737890145X

    Article  Google Scholar 

  52. Miguel MS, Sancho JM (1980) J Stat Phys 22:605. ISSN 1572-9613. https://doi.org/10.1007/BF01011341

    Article  Google Scholar 

  53. Hannes Risken TF (1996) The Fokker-Planck equation: methods of solution and applications. Springer series in synergetics, 2nd edn. Springer, Berlin. ISBN 9783540504986, 3540504982, 9780387504988, 0387504982

    Google Scholar 

  54. Viñales AD, Despósito MA (2007) Phys Rev E 75:042102. https://link.aps.org/doi/10.1103/PhysRevE.75.042102

    Article  Google Scholar 

  55. Metzler R, Klafter J (2000) Phys Rep 339:1. ISSN 0370-1573. http://www.sciencedirect.com/science/article/pii/S0370157300000703

    Article  CAS  Google Scholar 

  56. Zwanzig R (1973) J Stat Phys 9:215. ISSN 1572-9613. https://doi.org/10.1007/BF01008729

    Article  Google Scholar 

  57. Viñales AD, Despósito MA (2006) Phys Rev E 73:016111. https://link.aps.org/doi/10.1103/PhysRevE.73.016111

    Article  Google Scholar 

  58. Viñales AD, Wang KG, Despósito MA (2009) Phys Rev E 80:011101. https://link.aps.org/doi/10.1103/PhysRevE.80.011101

    Article  Google Scholar 

  59. Camargo RF, de Oliveira EC, Vaz J Jr (2009) J Math Phys 50:123518. https://doi.org/10.1063/1.3269587

    Article  Google Scholar 

  60. Sandev T, Tomovski ž (2010) Phys Scr 82:065001. http://stacks.iop.org/1402-4896/82/i=6/a=065001

Download references

Acknowledgements

The author kindly acknowledges the support from grant UNAM-DGAPA-PAPIIT-IN114717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Sevilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sevilla, F.J. (2018). The Non-equilibrium Nature of Active Motion. In: Olivares-Quiroz, L., Resendis-Antonio, O. (eds) Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues. Springer, Cham. https://doi.org/10.1007/978-3-319-73975-5_4

Download citation

Publish with us

Policies and ethics