Skip to main content
  • 529 Accesses

Abstract

Transport across heterogeneous, patchy environments is a ubiquitous phenomenon spanning fields of study including ecological movement, intracellular transport and regions of specialised function in a cell. These regions or patches may be highly heterogeneous in their properties, and often exhibit anomalous behaviour (resulting from e.g. crowding or viscoelastic effects) which necessitates the inclusion of non-Markovian dynamics in their study. However, many such processes are also subject to an internal self-regulating or tempering process due to concurrent competing functions being carried out. In this work we develop a model for anomalous transport across a heterogeneous, patchy environment subject to tempering. We show that in the long-time an equilibrium may be reached with constant effective transport rates between the patches. This result is qualitatively different from untempered systems where subdiffusion results in the long-time accumulation of all particles in the patch with lowest anomalous exponent, 0 < μ < 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petrovskii SV, Morozov AY, Venturino E (2002) Allee effect makes possible patchy invasion in a predator-prey system. Ecol Lett 5(3):345–352

    Google Scholar 

  2. Bressloff PC (2014) Stochastic processes in cell biology. Springer, Berlin

    Google Scholar 

  3. Méndez V, Fedotov S, Horsthemke W (2010) Reaction-transport systems: mesoscopic foundations, fronts, and spatial instabilities. Springer, Berlin

    Google Scholar 

  4. Méndez V, Campos D, Bartumeus F (2014) Stochastic foundations in movement ecology: anomalous diffusion, front propagation and random searches. Springer, Berlin

    Google Scholar 

  5. Schewe M, Nematian-Ardestani E, Sun H, Musinszki M et al (2016) A non-canonical voltage-sensing mechanism controls gating in K2P K + channels. Cell 164(5):937–949

    Google Scholar 

  6. Li N, Wu J-X, Ding D, Cheng J, Gao N, Chen L (2017) Structure of a pancreatic ATP-sensitive potassium channel. Cell 168(1–2):101–110

    Google Scholar 

  7. Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490(7419):201–207

    Google Scholar 

  8. Hirokawa N, Takemura R (2004) Molecular motors in neuronal development, intracellular transport and diseases. Curr Opin Neurobiol 14(5):564–573

    Google Scholar 

  9. Aridor M, Hannan LA (2002) Traffic jams II: an update of diseases of intracellular transport. Traffic 3(11):781–790

    Google Scholar 

  10. Saxton MJ (2001) Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. Biophys J 81(4):2226–2240

    Google Scholar 

  11. Santamaria F, Wils S, De Schutter E, Augustine GJ (2006) Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52(4):635–648

    Google Scholar 

  12. Golding I, Cox EC (2006) Physical nature of bacterial cytoplasm. Phys Rev Lett 96:098102

    Google Scholar 

  13. Goychuk I, Kharchenko VO, Metzler R (2014) How molecular motors work in the crowded environment of living cells: coexistence and efficiency of normal and anomalous transport. PLoS ONE 9(3):1–7

    Google Scholar 

  14. Klafter J, Sokolov IM (2011) First steps in random walks: from tools to applications. Oxford University Press, Oxford

    Google Scholar 

  15. Ariel G, Rabani A, Benisty S, Partridge JD, Harshey RM, Be’er A (2015) Swarming bacteria migrate by Lévy walk. Nat Commun 6(8396)

    Google Scholar 

  16. Harris TH, Banigan EJ, Christian DA, Konradt C, Wojno EDT, Norose K, Wilson EH, John B, Weninger W, Luster AD, Liu AJ, Hunter CA (2012) Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486(7404):545–548

    Google Scholar 

  17. Bruno L, Levi V, Brunstein M, Despósito MA (2009) Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors. Phys Rev E 80:011912

    Google Scholar 

  18. Köhler S, Schaller V, Bausch AR (2011) Structure formation in active networks. Nat Mater 10:462–468

    Google Scholar 

  19. Chechkin AV, Gorenflo R, Sokolov IM (2005) Fractional diffusion in inhomogeneous media. J Phys A Math Gen 38(42):L679

    Google Scholar 

  20. Fedotov S, Falconer S (2012) Subdiffusive master equation with space-dependent anomalous exponent and structural instability. Phys Rev E 85:031132

    Google Scholar 

  21. Korabel N, Barkai E (2010) Paradoxes of subdiffusive infiltration in disordered systems. Phys Rev Lett 104:170603

    Google Scholar 

  22. Fedotov S, Korabel N (2015) Self-organized anomalous aggregation of particles performing nonlinear and non-Markovian random walks. Phys Rev E 92:062127

    Google Scholar 

  23. Fedotov S, Korabel N (2017) Emergence of Lévy walks in systems of interacting individuals. Phys Rev E 95:030107

    Google Scholar 

  24. Stickler BA, Schachinger E (2011) Continuous time anomalous diffusion in a composite medium. Phys Rev E 84:021116

    Google Scholar 

  25. Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, New York

    Google Scholar 

  26. Fedotov S, Iomin A, Ryashko L (2011) Non-Markovian models for migration-proliferation dichotomy of cancer cells: anomalous switching and spreading rate. Phys Rev E 84:061131

    Google Scholar 

  27. Goychuk I (2015) Anomalous transport of subdiffusing cargos by single kinesin motors: the role of mechano-chemical coupling and anharmonicity of tether. Phys Biol 12(1):016013

    Google Scholar 

  28. Hafner AE, Santen L, Rieger H, Shaebani MR (2016) Run-and-pause dynamics of cytoskeletal motor proteins. Nat Sci Rep 6(37162)

    Google Scholar 

  29. Krishnamurthy H, Piscitelli CL, Gouaux E (2009) Unlocking the molecular secrets of sodium-coupled transporters. Nature 459:347–355

    Article  CAS  PubMed  Google Scholar 

  30. Guigas G, Weiss M (2008) Sampling the cell with anomalous diffusion – the discovery of slowness. Biophys J 94(1):90–94

    Article  CAS  PubMed  Google Scholar 

  31. Fedotov S, Méndez V (2008) Non-Markovian model for transport and reactions of particles in spiny dendrites. Phys Rev Lett 101:218102

    Article  PubMed  Google Scholar 

  32. Fedotov S, Al-Shamsi H, Ivanov A, Zubarev A (2010) Anomalous transport and nonlinear reactions in spiny dendrites. Phys Rev E 82:041103

    Article  Google Scholar 

  33. Cox DR, Miller HD (1977) The theory of stochastic processes. CRC Press, Boca Raton

    Google Scholar 

  34. Cox DR (1970) Renewal theory. Methuen, London

    Google Scholar 

  35. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    Google Scholar 

  36. Krapivinsky G, Kirichok Y, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  PubMed  Google Scholar 

  37. Boillée S, Velde CV, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52(1):39–59

    Article  PubMed  Google Scholar 

  38. Meerschaert MM, Zhang Y, Baeumer B (2008) Tempered anomalous diffusion in heterogeneous systems. Geophys Res Lett 35(17):L17403

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank N. Korabel and T. Waigh for fruitful discussions. This work is supported by EPSRC grant EP/N018060/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Stage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fedotov, S., Stage, H. (2018). Subdiffusive Transport in Heterogeneous Patchy Environments. In: Olivares-Quiroz, L., Resendis-Antonio, O. (eds) Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues. Springer, Cham. https://doi.org/10.1007/978-3-319-73975-5_3

Download citation

Publish with us

Policies and ethics