Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 296 Accesses

Abstract

In this chapter, the detection accuracy of an AF relay-based CSS approach over non-identical Nakagami-m fading channel is investigated. New exact and approximated closed-form expressions are derived for the average detection probability and the average false alarm probability over two diversity combining techniques: MRC scheme and SC scheme. The convergence rate of infinite series that appears in the derived exact closed-form expressions are also investigated and proposed a powerful acceleration algorithm that allows for the series termination with a finite number of terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    m=1 is a special case of Nakagami-m fading referred to be as a Rayleigh fading

References

  1. V.A. Aalo, Performance of maximal-ratio diversity systems in a correlated Nakagami-fading environment. IEEE Trans. Commun. 43(8), 2360–2369 (1995)

    Article  Google Scholar 

  2. T. Rappaport, Wireless Communications: Principles and Practice, 2nd edn. (Prentice-Hall, Upper Saddle River, 2002)

    Google Scholar 

  3. S. Atapattu, C. Tellambura, H. Jiang, Performance of an energy detector over channels with both multipath fading and shadowing. IEEE Trans. Wirel. Commun. 9(12), 3662–3670 (2010)

    Article  Google Scholar 

  4. M.K. Simon, M.-S. Alouini, Digital Communication over Fading Channels (Wiley, New York, 2005)

    Google Scholar 

  5. M.S. Alouini, A.J. Goldsmith, A unified approach for calculating the error rates of linearly modulated signals over generalized fading channels, in Proceedings of IEEE International Conference on Communications (ICC’98), June 1998, pp. 1324–1334

    Google Scholar 

  6. S.M. Mishra, A. Sahai, R.W. Brodersen, Cooperative sensing among cognitive radios, in Proceedings IEEE International Conference on Communications, (ICC’06), Istanbul, June 2006, pp. 1658–1663

    Google Scholar 

  7. M. Nakagami, The m-Distribution: A General Formula of Intensity Distribution of Rapid Fading. Statistical Methods in Radio Wave Propagation (Pergamon, New York, 1960)

    Chapter  Google Scholar 

  8. M. Abdel-Hafez, M. Safak, Performance analysis of digital cellular systems in Nakagami fading and correlated shadowing environmental. IEEE Trans. Veh. Tech. 48(5), 1381–1391 (1999)

    Google Scholar 

  9. R. Kwan, C. Leung, General order selection combining for Nakagami and Weibull fading channels. IEEE Trans. Wirel. Commun. 6(6), 2027–2033 (2007)

    Article  Google Scholar 

  10. G.K. Karagiannidis, N.C. Sagias, T.A. Tsiftsis, Closed-form statistics for the sum of squared Nakagami-m variates and its applications. IEEE Trans. Commun. 54(8), 1353–1359 (2004)

    Article  Google Scholar 

  11. M.-S. Alouni, A. Abdi, M. Kaveh, Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels. IEEE Trans. Veh. Tech. 50(6), 1471–1480 (2001)

    Google Scholar 

  12. Q.T. Zhang, Maximal-ratio combining over Nakagami fading channels with an arbitrary ranch covariance matrix. IEEE Trans. Veh. Tech. 48(4), 1141–1150 (1999)

    Article  Google Scholar 

  13. H. Suzuki, A statistical model for the urban radio propagation. IEEE Trans. Commun. 25, 673–680 (1997)

    Google Scholar 

  14. E.K. Al-Hussaini, A.A.M. Al-Bassiouni, Performance of MRC diversity systems for the detection of signals with Nakagami fading. IEEE Trans. Commun. 33(12), 1315–1319 (1985)

    Article  MathSciNet  Google Scholar 

  15. X. Qin, R.A. Berry, Distributed approaches for exploiting multiuser diversity in wireless networks. IEEE Trans. Commun. 52(2), 392–413 (2006)

    Google Scholar 

  16. G. Ganesan, G. Li, Cooperative spectrum sensing in cognitive radio, part I: two user networks. IEEE Trans. Wirel. Commun. 6(6), 2204–2213 (2007)

    Article  Google Scholar 

  17. H. Yomo, E. De Carvalho, A CSI estimation method for wireless relay network. IEEE Trans. Commun. 11(6), 480–482 (2007)

    Article  Google Scholar 

  18. S. Hussain, X. Fernando, Closed-form analysis of relay-based cognitive radio networks over Nakagami-m fading channels. IEEE Trans. Veh. Tech. 63(3), 1193–1203 (2014)

    Article  Google Scholar 

  19. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products, 6th edn. (Academic, London, 2000)

    Google Scholar 

  20. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. (Dover, New York, 1972)

    Google Scholar 

  21. G. Ganesan, G. Li, Cooperative spectrum sensing in cognitive radio, part II: multiuser networks. IEEE Trans. Wirel. Commun. 6(6), 2214–2211 (2007)

    Article  Google Scholar 

  22. W.-Y. Lee, I.F. Akyildiz, Optimal spectrum sensing framework for cognitive radio networks. IEEE Trans. Wirel. Commun. 7(10), 3845–3857 (2008)

    Google Scholar 

  23. C. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. Shellhammer, W. Caldwell, IEEE 802.22: the first cognitive radio wireless regional area network standard. IEEE Commun. Mag. 47(1), 130–138 (2009)

    Article  Google Scholar 

  24. J.N. Laneman, G.W. Wornell, Energy efficient antenna sharing and relaying for wireless networks, in Proceedings of IEEE International Conference on Wireless Communications and Networking (WCNC’00), Chicago (2000)

    Google Scholar 

  25. D.S. Michalopoulos, G.K. Karagiannidis, Performance analysis of single relay selection in Rayleigh fading. IEEE Trans. Wirel. Commun. 7(10), 3718–3724 (2008)

    Article  Google Scholar 

  26. T. Sauter, Computation of irregularly oscillating integrals. Appl. Numer. Math. 35(3), 245–264 (2000)

    Article  MathSciNet  Google Scholar 

  27. P. Wynn, Acceleration techniques in numerical analysis, with particular reference to problems in one independent variable. Stichting Mathematisch Centrum. Rekenafdeling (1962), pp. 149–156

    Google Scholar 

  28. K. Ben Letaief, W. Zhang, Cooperative communications for cognitive radio networks, in Proceedings of the IEEE, May 2009, pp. 878–893

    Google Scholar 

  29. Z. Quan, S. Cui, A.H. Sayed, Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE J. Sel. Top. Signal Process. 2(1), 28–40 (2008)

    Article  Google Scholar 

  30. E. Peh, Y.-C. Liang, Optimization for cooperative sensing in cognitive radio networks, in Proceedings of IEEE International Conference on Wireless Communications and Networking (WCNC’7), Kowloon, March 2007, pp. 27–32

    Google Scholar 

  31. Y.-C. Liang, Y. Zeng, E.C.Y. Peh, A.T. Hoang, Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans. Wirel. Commun. 7(4), 1325–1337 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernando, X., Sultana, A., Hussain, S., Zhao, L. (2019). Relay-Based Cooperative Spectrum Sensing. In: Cooperative Spectrum Sensing and Resource Allocation Strategies in Cognitive Radio Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73957-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73957-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73956-4

  • Online ISBN: 978-3-319-73957-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics