Bell’s Inequalities

  • Gábor Hofer-SzabóEmail author
  • Péter Vecsernyés
Part of the SpringerBriefs in Philosophy book series (BRIEFSPHILOSOPH)


This Chapter collects the most important concepts and some of the representative propositions concerning Bell’s inequalities in the general \(C^*\)-algebraic setting and in the special LPT framework.


Separable states Clauser-Horne inequality 


  1. G. Bacciagaluppi, Separation theorems and Bell inequalities in algebraic QM, in Symposium on the Foundations of Modern Physics 1993: Quantum Measurement, Irreversibility and Physics of Information, (World Scientific, 1994) pp. 29–37Google Scholar
  2. J.F. Clauser, M.A. Horne, A. Shimony and R.A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880–884 (1969)Google Scholar
  3. J.F. Clauser and M.A. Horne, Experimental consequences of objective local theories, Phys. Rev. D. 10, 526–535 (1974)Google Scholar
  4. R. Clifton and H. Halvorson, Entanglement and open systems in algebraic quantum field theory, Stud. Hist. Phil. Mod. Phys. 32 (1), 1–31 (2001)Google Scholar
  5. H. Halvorson, Algebraic quantum field theory, in Philos. Phys., vol. I, ed. by J. Butterfield, J. Earman (Elsevier, Amsterdam, 2007), pp. 731–922CrossRefGoogle Scholar
  6. L. Landau, On the violation of Bell’s inequality in quantum theory, Phys. Lett. A. 120, 54–56 (1987)Google Scholar
  7. S.J. Summers, R. Werner, Maximal violation of Bell’s inequalities for algebras of observables in tangent spacetime regions. Ann. Inst. Henri Poincaré Phys. Théor. 49, 215–243 (1988)MathSciNetzbMATHGoogle Scholar
  8. S.J. Summers, On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2, 201–247 (1990)Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute of PhilosophyResearch Centre for the HumanitiesBudapestHungary
  2. 2.Theoretical PhysicsWigner Research Centre for PhysicsBudapestHungary

Personalised recommendations