Advertisement

Bell’s Notion of Local Causality

  • Gábor Hofer-SzabóEmail author
  • Péter Vecsernyés
Chapter
Part of the SpringerBriefs in Philosophy book series (BRIEFSPHILOSOPH)

Abstract

At the beginning of this Chapter Bell’s different formulations of local causality will be reviewed. Next, we analyze the three key concepts featuring in Bell’s final formulation, namely “local beables”, “shielder-off region”, and “complete specification.” We translate them into the LPT framework and provide a generalized definition of local causality. Finally, we relate shielder-off regions to d-separating sets in a Bayesian network and prove that local primitive causality renders an atomic LPT to be locally causal.

Keywords

Bell’s local causality Local beables Shielder-off region Complete specification Bayesian networks Atomicity 

References

  1. J.S. Bell, Beables for quantum field theory, TH-2053-CERN, presented at the Sixth GIFT Seminar, Jaca, 2–7 June (1975); reprinted in (Bell, 2004, 52–62)Google Scholar
  2. J.S. Bell, Beables for quantum field theory, CERN-TH. 4035/84, (1984); reprinted in (Bell, 2004, 173–180)Google Scholar
  3. J.S. Bell, EPR correlations and EPW distributions, in New Techniques and Ideas in Quantum Measurement Theory (New York Academy of Sciences, 1986); reprinted in (Bell, 2004, 196–200)Google Scholar
  4. J.S. Bell, La nouvelle cuisine, in Between Science and Technology, ed. by J. Sarlemijn, P. Kroes (Elsevier, 1990); reprinted in (Bell, 2004, 232–248)Google Scholar
  5. J.S. Bell, Subject and object, in The Physicist’s Conception of Nature (D. Reidel, Dordrecht , 1973), pp. 687–90; reprinted in (Bell, 2004, 40–44)Google Scholar
  6. R. Clifton, The modal interpretation of algebraic quantum field theory. Phys. Lett. A 271(3), 167–177 (2000)ADSMathSciNetCrossRefGoogle Scholar
  7. R. Clifton, H. Halvorson, Entanglement and open systems in algebraic quantum field theory. Stud. Hist. Philos. Mod. Phys. 32(1), 1–31 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. D. Dieks, The modal interpretation of algebraic quantum field theory, in Ontological Aspects of Quantum Field Theory, ed. by M. Kuhlman, H. Lyre, A. Wayne (World Scientific, New Jersey, 2002), Chap. 11Google Scholar
  9. J. Earman, G. Valente, Relativistic causality in algebraic quantum field theory. Int. Stud. Philos. Sci. 28(1), 1–48 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. C. Glymour, R. Scheines, P. Spirtes, Causation, Prediction, and Search (Cambridge: The MIT Press, 2000)Google Scholar
  11. H. Halvorson, R. Clifton, Maximal beable subalgebras of quantum-mechanical observables. Int. J. Theor. Phys. 38, 2441–84 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. J. Henson, Comparing causality principles. Stud. Hist. Philos. Mod. Phys. 36, 519–543 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. J. Henson, Non-separability does not relieve the problem of Bell’s theorem. Found. Phys. 43, 1008–1038 (2013b)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. J. Henson, Confounding causality principles: comment on Rédei and San Pedro’s “Distinguishing causality principles”. Stud. Hist. Philos. Mod. Phys. 44, 17–19 (2013a)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. G. Hofer-Szabó, Bell’s local causality is a d-separation criterion, in Springer Proceedings in Mathematics and Statistics (forthcoming) (2018)Google Scholar
  16. G. Hofer-Szabó, Local causality and complete specification: a reply to Seevinck and Uffink, in Recent Developments in the Philosophy of Science: EPSA13 Helsinki, ed. by U. Mäki, I. Votsis, S. Ruphy, G. Schurz (Springer, Berlin, 2015a), pp. 209–226Google Scholar
  17. G. Hofer-Szabó, Relating Bell’s local causality to the Causal Markov Condition. Found. Phys. 45(9), 1110–1136 (2015b)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. G. Hofer-Szabó, P. Vecsernyés, On the concept of Bell’s local causality in local classical and quantum theory. J. Math. Phys. 56, 032303 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. T. Norsen, Local causality and completeness: Bell vs. Jarrett. Found. Phys. 39, 273 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. T. Norsen, J.S. Bell’s concept of local causality. Am. J. Phys. 79, 12 (2011)CrossRefGoogle Scholar
  21. J. Pearl, Causality: Models, Reasoning, and Inference (Cambridge University Press, Cambridge, 2000)Google Scholar
  22. M. Rédei, I. San Pedro, Distinguishing causality principles. Stud. Hist. Phil. Mod. Phys. 43, 84–89 (2012)Google Scholar
  23. T.S. Richardson, P. Spirtes, Ancestral graph Markov models. Ann. Stat. 30, 962–1030 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. L. Ruetsche, Interpreting Quantum Theories (Oxford University Press, Oxford, 2011)CrossRefzbMATHGoogle Scholar
  25. K. Sadeghi, S. Lauritzen, Markov properties for mixed graphs. Bernoulli 20(2), 676–696 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. M.P. Seevinck, J. Uffink, Not throwing our the baby with the bathwater: Bell’s condition of local causality mathematically ‘sharp and clean’, in Explanation, Prediction, and Confirmation The Philosophy of Science in a European Perspective, vol. 2, ed. by D. Dieks, W.J. Gonzalez, S. Hartmann, Th. Uebel, M. Weber (2011), pp. 425–450Google Scholar
  27. R. Werner, Local preparability of states and the split property in quantum field theory. Lett. Math. Phys. 13, 325–329 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute of PhilosophyResearch Centre for the HumanitiesBudapestHungary
  2. 2.Theoretical PhysicsWigner Research Centre for PhysicsBudapestHungary

Personalised recommendations