Local Causality: A Historical Introduction

  • Gábor Hofer-SzabóEmail author
  • Péter Vecsernyés
Part of the SpringerBriefs in Philosophy book series (BRIEFSPHILOSOPH)


In this chapter we briefly overview the history of local causality starting from the early ideas on the prohibition of the action at a distance and ending with Bell’s formulation of local causality. We state the central message of the book and outline the content of the subsequent chapters.


Local causality Action at a distance John Bell 


  1. E.G. Beltrametti, B.C. van Fraassen (eds.), The Logic of Quantum Mechanics (Addison Wesley, Reading Mass, 1981)zbMATHGoogle Scholar
  2. J.S. Bell, Beables for quantum field theory, (CERN-TH. 4035/84, 1984); (reprinted in Bell, 2004, 173–180)Google Scholar
  3. J.S. Bell, La nouvelle cuisine, in Between Science and Technology, ed. by J. Sarlemijn, P. Kroes (Elsevier, 1990) (reprinted in Bell, 2004, pp. 232–248)Google Scholar
  4. J. Butterfield, Vacuum correlations and outcome independence in algebraic quantum field theory, in Fundamental Problems in Quantum Theory, Annals of the New York Academy of Sciences, Proceedings of a conference in honour of John Wheeler, ed. by D. Greenberger, A. Zeilinger (1995) pp. 768–785Google Scholar
  5. J. Butterfield, Stochastic Einstein locality revisited. Brit. J. Phil. Sci. 58, 805–867 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. J. Earman, No superluminal propagation for classical relativistic quantum fields. Stud. Hist. Phil. Mod. Phys. 48, 102–108 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. J. Earman, G. Valente, Relativistic causality in algebraic quantum field theory. Int. Stud. Phil. Sci. 28(1), 1–48 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. A. Einstein, in Relativity: The Special and the General Theory, 2016, (Penguin Classics, 2006)Google Scholar
  9. S. Goldstein, T. Norsen, D.V. Tausk, N. Zanghi, Bell’s theorem. Scholarpedia 6(10), 8378 (2011)ADSCrossRefGoogle Scholar
  10. R. Haag, Local Quantum Physics (Springer, Heidelberg, 1992)CrossRefzbMATHGoogle Scholar
  11. H. Halvorson, Algebraic quantum field theory, in Philosophy of Physics, vol. I, ed. by J. Butterfield, J. Earman (Elsevier, Amsterdam, 2007), pp. 731–922CrossRefGoogle Scholar
  12. J. Henson, Non-separability does not relieve the problem of Bell’s theorem. Found. Phys. 43, 1008–1038 (2013b)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. M.B. Hesse, Forces and Fields: The Concept of Action at a Distance in the History of Physics (Dover Publications, Mineola, 2005)zbMATHGoogle Scholar
  14. G. Hofer-Szabó, P. Vecsernyés, Reichenbach’s Common Cause Principle in AQFT with locally finite degrees of freedom. Found. Phys. 42, 241–255 (2012a)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. G. Hofer-Szabó, P. Vecsernyés, Noncommutative Common Cause Principles in AQFT. J. Math. Phys. 54, 042301 (2013a)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. J.M. Jauch, Foundations of Quantum Mechanics (Reading Mass, Addison Wesley, 1968)Google Scholar
  17. I. Kant, in Metaphysical Foundations of Natural Science, 1786, transl. M. Friedman (Cambridge University Press, Cambridge, 2004)Google Scholar
  18. G.W. Mackey, Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963)zbMATHGoogle Scholar
  19. C. Mann, R. Crease, John Bell, particle physicist (Interview). Omni 10(8), 84–92 (1988)Google Scholar
  20. T. Maudlin, What Bell did. J. Phys. A: Math. Theor. 47, 424010 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. J.C. Maxwell, Treatise on Electricity and Magnetism, (Oxford, 1881)Google Scholar
  22. E. McMullin, “The Explanation of Distant Action: Historical Notes,” in Philosophical Consequences of Quantum Theory, ed. by J.T. Cushing, E. McMullin (University of Notre Dame Press, Indiana, 1989)Google Scholar
  23. E. McMullin, The origins of the field concept in physics. Phys. Perspect. 4, 13–39 (2002)ADSMathSciNetCrossRefGoogle Scholar
  24. I. Newton, Isaac Newton: Philosophical Writings (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  25. T. Norsen, Local causality and Completeness: Bell vs. Jarrett. Found. Phys. 39, 273 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. T. Norsen, J.S. Bell’s concept of local causality. Am. J. Phys 79, 12 (2011)CrossRefGoogle Scholar
  27. C. Piron, Foundations of Quantum Physics (Benjamin, Reading Mass, 1976)CrossRefzbMATHGoogle Scholar
  28. M. Rédei, Reichenbach’s Common Cause Principle and quantum field theory. Found. Phys. 27, 1309–1321 (1997)ADSMathSciNetCrossRefGoogle Scholar
  29. M. Rédei, A categorial approach to relativistic locality. Stud. Hist. Phil. Mod. Phys. 48, 137–146 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. M. Rédei, J.S. Summers, Local primitive causality and the Common Cause Principle in quantum field theory. Found. Phys. 32, 335–355 (2002)MathSciNetCrossRefGoogle Scholar
  31. M. P. Seevinck, J. Uffink, Not throwing our the baby with the bathwater: Bell’s condition of local causality mathematically ‘sharp and clean’, in Explanation, Prediction, and Confirmation The Philosophy of Science in a European Perspective, vol. 2, ed. by D. Dieks, W.J. Gonzalez, S. Hartmann, Th. Uebel, M. Weber (2011) pp. 425–450Google Scholar
  32. S.J. Summers, R. Werner, Bell’s inequalities and quantum field theory, II: Bell’s inequalities are maximally violated in the vacuum. J. Math. Phys. 28, 2448–2456 (1987b)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. S.J. Summers, R. Werner, Bell’s inequalities and quantum field theory, I: General setting. J. Math. Phys. 28, 2440–2447 (1987a)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. S.J. Summers, R. Werner, Maximal violation of Bell’s inequalities for algebras of observables in tangent spacetime regions. Ann. Inst. Henri Poincaré Phys. Théor. 49, 215–243 (1988)MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute of PhilosophyResearch Centre for the HumanitiesBudapestHungary
  2. 2.Theoretical PhysicsWigner Research Centre for PhysicsBudapestHungary

Personalised recommendations