Advertisement

Geometry and Visual Reasoning

Introducing Algebraic Language in the Manner of Liu Hui and al-Khwãrizmî
  • Iolanda Guevara-Casanova
  • Carme Burgués-Flamarich
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

The general aim of this chapter is to identify the potential learning opportunities provided by the introduction of historical geometric diagrams into student tasks. To this end, we examine some problem sets for secondary education students concerning situations to be solved with diagrams in which right triangles or solving second-degree equations are involved. In all cases the objective is that students should transfer linguistically expressed reasoning (second-degree algebraic expressions) to reasoning with visual diagrams (figures with squares and rectangles) that are the geometric interpretation of the second-degree algebraic expressions. The research is therefore focused on students’ learning process, and specifically, the results they achieve by the use of these diagrams.

Keywords

Teaching and learning of algebra Geometry-algebra connection Visualization Historical context al-Khwãrizmî Liu Hui 

References

  1. al-Khwãrizmî, M. (1831). The algebra of Mohammed ben Musa (F. Rosen, Ed. and Trans.). London: Oriental Translation Fund. Resource document. http://www.wilbourhall.org/pdfs/The_Algebra_of_Mohammed_Ben_Musa2.pdf. Accessed August 29, 2017.
  2. Barwise, J., & Etchemendy, J. (1996). Visual information and valid reasoning. In G. Allwein & J. Barwise (Eds.), Logical reasoning with diagrams (pp. 3–23). New York: Oxford University Press.Google Scholar
  3. Burgués, C. (2008). La representación de las ideas matemáticas. In M. M. Hervás-Asenjo (Ed.), Competencia matemàtica e interpretación de la realidad (pp. 23–40). Madrid: Secretaria General Técnica del MEC.Google Scholar
  4. Burgués, C., & Sarramona, J. (Eds.). (2013). Competències bàsiques de l’àmbitmatemàtic. Barcelona: Departament d’ Ensenyament, Generalitat de Catalunya. http://ensenyament.gencat.cat/web/.content/home/departament/publicacions/colleccions/competencies-basiques/eso/eso-matematic.pdf. Accessed August 9, 2017.
  5. Chemla, K., & Guo, S. (Eds.). (2005). Les Neuf Chapitres. Le classique mathématique de la Chine ancienne et ses commentaires. París: Dunod.Google Scholar
  6. Cullen, C. (1996). Astronomy and mathematics in ancient China: The Zhou bi suanjing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Dauben, J. W. (2007). Chinese mathematics. In V. J. Katz (Ed.), The mathematics of Egypt, Mesopotamia, China, India and Islam. A sourcebook (pp. 187–384). Princeton, NJ: Princeton University Press.Google Scholar
  8. Demattè, A. (2010). Vedere la matematica. Noi, con la storia. Trento: Editrice UNI Service.Google Scholar
  9. Fauvel, J., & van Maanen, J. (Eds.). (2000). History in mathematics education. The ICMI study. New ICMI Study Series (Vol. 6). Dordrecht: Kluwer.Google Scholar
  10. Giaquinto, M. (1992). Visualizing as a means of geometrical discovery. Mind and Language, 7, 382–401.CrossRefGoogle Scholar
  11. Giaquinto, M. (2007). Visual thinking in mathematics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  12. Giardino, V. (2009). Towards a diagrammatic classification. The Knowledge Engineering Review, 00(0), 1–13.Google Scholar
  13. Giardino, V. (2014). Diagram based reasoning. https://diagrambasedreasoning.wordpress.com/. Accessed August 9, 2017.
  14. Guevara, I. (2009). La història de les matemàtiques dins dels nous currículums de secundària: La introducció de contextos històrics a l’aula, un recurs per a millorar la competència matemàtica. http://www.xtec.cat/sgfp/llicencies/200809/memories/1864m.pdf. Accessed August 9, 2017.
  15. Guevara, I. (2015). L’ús de contextos històrics a l’aula de matemàtiques de secundària: El cas concret de la visualització en la connexiógeometria – àlgebra (Tesi doctoral). http://diposit.ub.edu/dspace/handle/2445/66657?mode=full. Accessed August 9, 2017.
  16. Guevara, I., Massa, M. R., & Romero, F. (2006). Textos históricos para la enseñanza de las matemáticas. In J. A. Pérez-Bustamante, J. C. Martín-Fernández, E. Wulff-Barreiro, J. F. Casanueva-González, & F. Herrera-Rodríguez (Eds.), Actas del IX Congreso de la Sociedad Española de Historia de las Ciencias y de las Técnicas (pp. 1301–1304). Cádiz: SEHCYT.Google Scholar
  17. Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using history in mathematics education. Educational Studies in Mathematics, 71(3), 235–261.CrossRefGoogle Scholar
  18. Katz, V., & Barton, B. J. (2007). Stages in the history of algebra with implications for teaching. Educational Studies in Mathematics, 66, 185–201.CrossRefGoogle Scholar
  19. Mancosu, P. (2001). Mathematical explanation: Problems and prospects. Topoi, 20(1), 97–117.CrossRefGoogle Scholar
  20. Mancosu, P. (2005). Visualization in logic and mathematics. In P. Mancosu, K. F. Jørgensen, & S. A. Pederson (Eds.), Visualization, explanation and reasoning styles in mathematics (pp. 13–30). The Netherlands: Springer.CrossRefGoogle Scholar
  21. Mason, J., Graham, A., & Johnston-Wilder, S. (2005). Developing thinking in algebra. London: SAGE.Google Scholar
  22. National Council of Teachers of Mathematics. (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: Author.Google Scholar
  23. Niss, M. (2002). Mathematical competencies and the learning of mathematics: The Danish KOM project. Denmark. http://www.math.chalmers.se/Math/Grundutb/CTH/mve375/1213/docs/KOMkompetenser.pdf. Accessed August 9, 2017.
  24. Niss, M., & Højgaard, T. (Eds.). (2011). Competencies and mathematical learning. Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde: Roskilde University. Department of Science, Systems and Models, IMFUFA tekst nr. 485. http://milne.ruc.dk/imfufatekster/pdf/485web_b.pdf. Accessed August 9, 2017.
  25. Puig, L. (2008–2011). Historias de al-Khwârizmî. (Part 1) Suma, 58, 125–130; (Part 2) Suma, 59, 105–112; (Part 3) Suma, 60, 103–108; (Part 4) Suma, 65, 87–94; (Part 5) Suma, 66, 89–100. http://revistasuma.es/revistas/. Accessed August 9, 2017.
  26. Radford, L., & Guérette, G. (2000). Second degree equations in the classroom: A Babylonian approach. In V. Katz (Ed.), Using history to teach mathematics. An international perspective. MAA Notes (Vol. 51, pp. 69–75). Washington, DC: The Mathematical Association of America.Google Scholar
  27. Radford, L., & Puig, L. (2007). Syntax and meaning as sensuous, visual, historical forms of algebraic thinking. Educational Studies in Mathematics, 66, 145–164.CrossRefGoogle Scholar
  28. Siu, M. K. (2000). An excursion in ancient Chinese mathematics. In V. J. Katz (Ed.), Using history to teach mathematics. An international perspective. MAA Notes (Vol. 51, pp. 159–166). Washington, DC: The Mathematical Association of America.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Iolanda Guevara-Casanova
    • 1
  • Carme Burgués-Flamarich
    • 2
  1. 1.Universitat Autònoma BarcelonaBandalonaSpain
  2. 2.Universitat BarcelonaBarcelonaSpain

Personalised recommendations