Advertisement

History of Mathematics and Teachers’ Education: On Otherness and Empathy

  • David Guillemette
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

In this chapter, I develop some major points from the results of an empirical study searching to describe the dépaysement épistémologique (epistemological disorientation) lived by six secondary school pre-service teachers taking part of a history of mathematics course. Following a phenomenological approach, a description of the lived experience of the participants engaged in the reading of historical texts was produced. This description takes the form of a polyphonic narration (in a Bakhtinian dialogical perspective) that carries a plurality of points of view responding to each other. Our reading of this narration leads us to important reflections about otherness and empathy concerning the role of history of mathematics in the context of teachers’ training.

Keywords

History of mathematics Teachers’ education Mathematics education Dépaysement épistémologique Empathy 

References

  1. Arcavi, A., & Isoda, M. (2007). Learning to listen: From historical sources to classroom practice. Educational Studies in Mathematics, 66(2), 111–129.CrossRefGoogle Scholar
  2. Bakhtin, M. (1977) [published by the name of V. N. Volochinov]. Le marxisme et la philosophie du langage. Paris: Minuit (Originally published in 1929).Google Scholar
  3. Bakhtin, M. (2003). Pour une philosophie de l’acte. Lausanne: Édition l’Âge d’Homme (Originally published in 1986).Google Scholar
  4. Barbin, É. (1997). Histoire et enseignement des mathématiques: Pourquoi? Comment? Bulletin de l’Association mathématique du Québec, 37(1), 20–25.Google Scholar
  5. Barbin, É. (2006). Apport de l’histoire des mathématiques et de l’histoire des sciences dans l’enseignement. Tréma, 26(1), 20–28.Google Scholar
  6. Barbin, É. (2012). L’histoire des mathématiques dans la formation: une perspective historique. In J.-L. Dorier & S. Coutat (Eds.), Actes du Colloque de l’Espace Mathématique Francophone 2012 (pp. 546–554). Geneva: EMF.Google Scholar
  7. Bidwell, J. K. (1993). Humanize your classroom with the history of mathematics. Mathematics Teacher, 86, 461–464.Google Scholar
  8. Brown, S. I. (1996). Towards humanistic mathematics education. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education, part 2 (pp. 1289–1321). Dordrecht: Kluwer.Google Scholar
  9. D’Enfert, R., Djebbar, A., & Radford, L. (2012). Dimensions historique et culturelle dans l’enseignement des mathématiques—Compte-rendu du Groupe de Travail no. 4. In J.-L. Dorier & S. Coutat (Eds.), Actes du Colloque de l’Espace Mathématique Francophone 2012 (pp. 523–528). Geneva: EMF.Google Scholar
  10. Fauvel, J., & van Maanen, J. (Eds.). (2000). History in mathematics education: The ICMI study. New ICMI Study Series (Vol. 6). Dordrecht: Kluwer.Google Scholar
  11. Fried, M. N. (2001). Can mathematics education and history of mathematics coexist? Science & Education, 10(4), 391–408.CrossRefGoogle Scholar
  12. Fried, M. N. (2007). Didactics and history of mathematics: Knowledge and self-knowledge. Educational Studies in Mathematics, 66(2), 203–223.CrossRefGoogle Scholar
  13. Fried, M. N. (2008). History of mathematics in mathematics education: A Saussurean perspective. The Montana Mathematics Enthusiast, 5(2), 185–198.Google Scholar
  14. Fried, M. N. (2014). History of mathematics and mathematics education. In M. Matthews (Ed.), History, philosophy and science teaching handbook (pp. 669–705). New York: Springer.Google Scholar
  15. Fried, M. N., Guillemette, D., & Jahnke, H. N. (2016). Theoretical and/or conceptual frameworks for integrating history in mathematics education. In L. Radford, F. Furinghetti & T. Hausberger (Eds.), Proceedings of HPM 2016 (pp. 211–230), Montpellier: IREM de Montpellier.Google Scholar
  16. Guillemette, D. (2011). Les études empiriques concernant l’utilisation de l’histoire dans l’enseignement des mathématiques: Un regard sur la méthodologie. Petit x, 86, 5–26.Google Scholar
  17. Guillemette, D. (2015a). L’histoire des mathématiques et la formation des enseignants du secondaire: sur l’expérience du dépaysement épistémologique des étudiants. Thèse de doctorat, Université du Québec à Montréal, Montréal, Canada. http://www.archipel.uqam.ca/7164/1/D-2838.pdf. Accessed August 7, 2017.
  18. Guillemette, D. (2015b). Rôle de l’histoire des mathématiques dans l’enseignement-apprentissage des mathématiques: Le point de vue socioculturel. In C. Sabena & B. Di Paola (Eds.), Actes de la 67e réunion de la Commission internationale pour l’étude et l’amélioration de l’enseignement des mathématiques (CIEAEM 67)—Enseigner et apprendre les mathématiques: ressources et obstacles (pp. 607–618). Aosta, Italy: CIEAEM.Google Scholar
  19. Guillemette, D. (2016). Épistémologie historique, humanisme et approches socioculturelles: Dialogue sur l’histoire des mathématiques. For the Learning of Mathematics, 36(1), 29–33.Google Scholar
  20. Guillemette, D. (2017). History of mathematics in secondary school teachers’ training: Towards a nonviolent mathematics education. Educational Studies in Mathematics, 96(3), 349–365.Google Scholar
  21. Gulikers, I., & Blom, K. (2001). “A historical angle”: Survey of recent literature on the use and value of history in geometrical education. Educational Studies in Mathematics, 47(2), 223–258.CrossRefGoogle Scholar
  22. Jahnke H. N. (1994). The historical dimension of mathematical understanding: Objectifying the subjective. In J. P. da Ponte & J. F. Mato (Eds.), Proceedings of the Eighteenth International Conference for the Psychology of Mathematics Education (Vol. 1, pp. 139–156). Lisbon: University of Lisbon.Google Scholar
  23. Jahnke, H. N. (2014). History in mathematics education: A hermeneutic approach. In M. N. Fried & T. Dreyfus (Eds.), Mathematics and mathematics education: Searching for common ground (pp. 75–88). Dordrecht: Springer.CrossRefGoogle Scholar
  24. Jahnke, H. N., Arcavi, A., Barbin, E., Bekken, O., Furinghetti, F., El Idrissi, A., et al. (2000). The use of original sources in the mathematics classroom. In J. Fauvel & J. van Maanen (Eds.), History in mathematics education: The ICMI study (pp. 291–328). Dordrecht: Kluwer.Google Scholar
  25. Jankvist, U. T. (2007). Empirical research in the field of using history in mathematics education: Review of empirical studies in HPM 2004 & ESU 4. Nomad, 12(3), 82–105.Google Scholar
  26. Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using history in mathematics education. Educational Studies in Mathematics, 71(3), 235–261.CrossRefGoogle Scholar
  27. Lamarre, A.-M. (2004). Étude de l’expérience de la première année d’enseignement au primaire dans une perspective phénoménologico-herméneutique. Recherches qualitatives, 24, 19–56.Google Scholar
  28. Levinas, E. (2010). Totalité et infini: Essai sur l’extériorité. Paris: Librairie Générale Française (Œuvre originale publiée en 1971).Google Scholar
  29. Levinas, E. (2011). Le temps et l’autre. Paris: Presses Universitaires de France (Originally published in 1979).Google Scholar
  30. Radford, L. (2011). Vers une théorie socioculturelle de l’enseignement-apprentissage: La théorie de l’Objectivation. Éléments, 1, 1–27.Google Scholar
  31. Radford, L. (2013). Three key concepts of the theory of objectification: Knowledge, knowing, and learning. Journal of Research in Mathematics Education, 2(1), 7–44.Google Scholar
  32. Radford, L., Furinghetti, F., & Katz, V. (2007). Introduction: The topos of meaning or the encounter between past and present. Educational Studies in Mathematics, 66(2), 107–110.CrossRefGoogle Scholar
  33. Roth, W.-M., & Radford, L. (2011). A cultural historical perspective on teaching and learning. Rotterdam: Sense.CrossRefGoogle Scholar
  34. Tang, K.-C. (2007). History of mathematics for the young educated minds: A Hong Kong reflection. In F. Furinghetti, S. Kaijser, & C. Tzanakis (Eds.), Proceedings HPM 2004 & ESU 4 (rev. ed., pp. 630–638). Uppsala: University of Uppsala.Google Scholar
  35. van Manen, M. (1994). “Doing” phenomenological research and writing: An introduction. Edmonton: University of Alberta.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversité du Québec à MontréalMontréalCanada

Personalised recommendations