Advertisement

The Pantograph: A Historical Drawing Device for Math Teaching

  • Silvia Schöneburg-Lehnert
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

Invented more than 400 years ago, the Pantograph—also called “Stork’s beak”—is still known in modern times. Although it has lost its practical importance, it still invites users to play with geometry. This and the fact that the mathematical background to its working has strong links to modern curriculum suggest studying the Pantograph in class may be beneficial. Furthermore, the history of the Pantograph is described in historical sources and tells a lot about the history of mathematics. But can the history of the Pantograph be used in class to teach mathematics, Latin, history, or handicraft? We investigate this question in an interdisciplinary school project using the classical text by Christoph Scheiner of 1631 for studying the Pantograph with students of grades 8–11.

Keywords

Intercept theorem Similarities Historical drawing devices Pantograph Christoph Scheiner Latin 

References

  1. Arcavi, A., & Bruckheimer, M. (2000). Didactical uses of primary sources from the history of mathematics. Themes in Education, 1(1), 55–74.Google Scholar
  2. Barbin, É. (1991). The reading of original texts: How and why to introduce a historical perspective. For the Learning of Mathematics, 11(2), 12–13.Google Scholar
  3. Bramer, B. (1617). Bericht eines Parallel Instruments. In B. Bramer (Ed.), Bericht und Gebrauch eines Proportional Lineals: Neben kurzem Underricht eines Parallel-Instruments (pp. 47–58). Marburg: Paul Egenolff. http://www.mdz-nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:bvb:12-bsb10052767-8. Accessed August 11, 2017.
  4. Daxecker, F. (2014). Christoph Scheiner und die physiologische Optik des Auges. Klinische Monatsblätter für Augenheilkunde, 231(10), 1034–1036.CrossRefGoogle Scholar
  5. Fasanelli, F., Arcavi, A., Bekken, O., Carvalho e Silva, J., Daniel, C., Furinghetti, F., et al. (2000). The political context. In J. Fauvel & J. van Maanen (Eds.), History in mathematics education: The ICMI study. New ICMI Study Series (Vol. 6, pp. 1–38). Dordrecht: Kluwer.Google Scholar
  6. Glaubitz, M. R. (2010). Mathematikgeschichte lesen und verstehen: Eine theoretische und empirische Vergleichstudie (Unpublished doctoral dissertation). University of Duisburg-Essen, Duisburg, Essen.Google Scholar
  7. Goebel, M., Malitte, E., Richter, K., Schlosser, H., Schöneburg, S., & Sommer, R. (2003). Der Pantograph in historischen Veröffentlichungen des 17. bis 19. Jahrhunderts. In Schriften zum Bibliotheks- und Büchereiwesen in Sachsen-Anhalt, 84. Halle (Saale): Universitäts- und Landesbibliothek Sachsen-Anhalt.Google Scholar
  8. Griesel, H., Postel, H., Suhr, F., Ladenthin, W., & Lösche, M. (Eds.). (2015). EdM—Elemente der Mathematik Sachsen 8. Schuljahr. Braunschweig: Schroedel/Westermann Gruppe.Google Scholar
  9. Jahnke, H. N., Arcavi, A., Barbin, É., Bekken, O., Furinghetti, F., El Idrissi, A., et al. (2000). The use of original sources in the mathematics classroom. In J. Fauvel & J. van Maanen (Eds.), History in mathematics education: The ICMI study. New ICMI Study Series (Vol. 6, pp. 291–328). Dordrecht: Kluwer.Google Scholar
  10. Jahnke, H. N., Furinghetti, F., & van Maanen, J. (Eds.). (2006). Report No. 22/2006 on the mini-workshop on studying original sources in mathematics education (pp. 1285–1318). Oberwolfach: Mathematisches Forschunginstitut Oberwolfach.Google Scholar
  11. Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using history in mathematics education. Educational Studies in Mathematics, 71(3), 235–261.CrossRefGoogle Scholar
  12. Jankvist, U. T. (2014). On the use of primary sources in the teaching and learning of mathematics. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science Teaching (pp. 873–908). Dordrecht: Springer.Google Scholar
  13. Pandel, H.-J. (2003). Quelleninterpretation. Die schriftliche Quelle im Geschichtsunterricht. Schwalbach/Ts: Wochenschau Verlag.Google Scholar
  14. Pengelley, D. (2011). Teaching with primary historical sources: Should it go mainstream? Can it? In V. Katz & C. Tzanakis (Eds.), Recent developments on introducing a historical dimension in mathematics education. MAA Notes (Vol. 78, pp. 1–8). Washington, DC: The Mathematical Association of America.Google Scholar
  15. Richter, K., & Schöneburg, S. (2008). Der Jesuitengelehrte Christoph Scheiner und sein Lehrbuch zum Zeichengerät Pantograph. In G. Biegel, K. Reich, & T. Sonar (Eds.), Historische Aspekte im Mathematikunterricht an Schule und Universität (pp. 137–198). Göttingen: Termessos.Google Scholar
  16. Scheiner, C. (1631). Pantographice, seu ars delineandi, res quaslibet per parallelo-grammum lineare seu cavum, mechani-cum, mobile. Rome: Ex Typography Ludouici Grignani.Google Scholar
  17. Schönewald, B. (Ed.). (2000). Sammelblatt des historischen Vereins Ingolstadt, Jahrgang 109. http://periodika.digitale-sammlungen.de/ingolstadt/Band_bsb00045411.html. Accessed August 10, 2017.
  18. Schwenter, D. (1625). Geometriæ practicæ novæ tractatus I. Nuremburg: Simon Halbmayer. http://diglib.hab.de/drucke/xb-4758-1/start.htm. Accessed August 30, 2017.
  19. Scriba, C. J. (1983). Die Rolle der Geschichte der Mathematik in der Ausbildung von Schülern und Lehrern. DMV—Jahresbericht der Deutschen Mathematiker-Vereinigung, 85(3), 113–128.Google Scholar
  20. Thomaidis, Y., & Tzanakis, C. (2008). Original texts in theclassroom. In É. Barbin, N. Stehlíková, & C. Tzanakis (Eds.), History and epistemology in mathematics education: Proceedings of the 5th ESU (pp. 49–61). Prague: Vydavatelskýservis, Plzeň.Google Scholar
  21. van Randenborgh, C. (2015). Instrumente der Wissenvermittlung im Mathematikunterricht. Wiesbaden: Springer Fachmedien.Google Scholar
  22. von Braunmühl, A. (1891). Christoph Scheiner als Mathematiker, Physiker und Astronom. Bamberg: Buchner.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematisches Institut, Universität LeipzigLeipzigGermany

Personalised recommendations