Advertisement

Primary Historical Sources in the Classroom

Graph Theory and Spanning Trees
  • Jerry Lodder
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

I study student response to learning from a specific historical curricular module and compare this to advantages of learning from historical sources cited in education literature. The curricular module is “Networks and Spanning Trees,” based on the original works of Arthur Cayley, Heinz Prüfer and Otakar Borůvka. Cayley identifies a compelling pattern in the enumeration of (labeled) trees, although his counting argument is incomplete. Prüfer provides an alternate proof of “Cayley’s formula” by counting all railway networks connecting n towns that contain the least number of segments. Borůvka develops one of the first algorithms for finding a minimal spanning tree by considering how best to connect n towns to an electrical network.

Keywords

Historical sources Graph theory Trees Minimal spanning trees 

Notes

Acknowledgements

The author would like to thank the United States National Science Foundation under grants DUE 0717752 and DUE 1523747 for supporting this project. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

References

  1. Barbin, É. (1997). Histoire et enseignement des mathématique: Pourquoi? Comment? Bulletin de l’Association Mathématique du Québec, 37(1), 20–25.Google Scholar
  2. Barnett, J., Bezhanishvili, G., Leung, H., Lodder, J., Pengelley, D., Pivkina, I., et al. (2013). Primary historical sources in the classroom: Discrete mathematics and computer science. Convergence.  https://doi.org/10.4169/loci003984. http://www.maa.org/press/periodicals/convergence/primary-historical-sources-in-the-classroom-discrete-mathematics-and-computer-science. Accessed August 10, 2017.
  3. Borůvka, O. (1926a). O jistém problému minimálnim [On a certain minimal problem]. Práce Moravské Přídovědecké Spolecnostiv Brně, 3, 37–58.Google Scholar
  4. Borůvka, O. (1926b). Přispěvek k řešení otázky ekonomické stavby elektrovodních sítí [A contribution to the solution of a problem on the economical construction of power networks]. Elecktronický obzor, 15, 153–154.Google Scholar
  5. Cayley, A. (1857). On the analytical forms called trees. Philosophical Magazine, 4(12), 172–176.Google Scholar
  6. Cayley, A. (1889). A theorem on trees. Quarterly Journal of Pure and Applied Mathematics, 23, 376–378.Google Scholar
  7. Fried, M. (2001). Can mathematics education and history of mathematics coexist? Science & Education, 10, 391–408.CrossRefGoogle Scholar
  8. Graham, R. L., & Hell, P. (1985). On the history of the minimum spanning tree problem. Annals of the History of Computing, 7(1), 43–57.CrossRefGoogle Scholar
  9. Jahnke, H. N., Arcavi, A., Barbin, É., Bekken, O., Furinghetti, F., El Idrissi, A., et al. (2000). The use of original sources in the mathematics classroom. In J. Fauvel & J. van Maanen (Eds.), History in mathematics education: The ICMI study. New ICMI Study Series (Vol. 6, pp. 291–328). Dordrecht: Kluwer.Google Scholar
  10. Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using history in mathematics education. Educational Studies in Mathematics, 71(3), 235–261.CrossRefGoogle Scholar
  11. Kjeldsen, T. H., & Blomhøj, M. (2012). Beyond motivation: History as a method for learning meta-discursive rules in mathematics. Educational Studies in Mathematics, 80, 327–349.CrossRefGoogle Scholar
  12. Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the travelling salesman problem. Proceedings of the American Mathematical Society, 7(1), 48–50.CrossRefGoogle Scholar
  13. Lawler, E. L. (1976). Combinatorial optimization: Networks and matroids. New York: Holt, Rinehart and Winston.Google Scholar
  14. Lodder, J. (2013). Networks and spanning trees. Convergence.  https://doi.org/10.4169/loci003995, http://www.maa.org/press/periodicals/convergence/networks-and-spanning-trees. Accessed August 10, 2017.
  15. Lodder, J. (2014). Networks and spanning trees: The juxtaposition of Prüfer and Borůvka. PRIMUS, 24(8), 737–752.CrossRefGoogle Scholar
  16. Nešetřilm, J., Milková, E., & Nešetřilová, H. (2001). Otakar Borůvka on minimum spanning tree problem: Translation of both 1926 papers. Discrete Mathematics, 233(1), 3–36.CrossRefGoogle Scholar
  17. Prim, R. C. (1957). The shortest connecting network and some generalizations. Bell Systems Technology Journal, 36, 142–144.CrossRefGoogle Scholar
  18. Prüfer, H. (1918). Neuer Beweis eines Satzes über Permutationen. Archiv der Mathematik und Physik, 27(3), 142–144.Google Scholar
  19. Prüfer, H. (1976). Neuer Beweis eines Satzes über Permutationen. In N. L. Biggs, E. K. Lloyd, & R. J. Wilson (Eds.), Graph theory 1736–1936 (pp. 52–54). Oxford: Clarendon Press (original work published in 1918).Google Scholar
  20. Schoenfeld, A. H., & Floden, R. E. (2014). The Algebra Teaching Study and Mathematics Assessment Project. The TRU math scoring rubic. Berkeley, CA & E. Lansing, MI: Graduate School of Education, University of California, Berkely & College of Education, Michigan State University. http://ats.berkeley.edu/tools/TRUMathRubricAlpha.pdf. Accessed August 10, 2017.
  21. Sfard, A. (2000). On the reform movement and the limits of mathematical discourse. Mathematical Thinking and Learning, 3, 157–189.CrossRefGoogle Scholar
  22. Veblen, O. (1922). Analysis situs. New York: American Mathematical Society.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNew Mexico State UniversityLas CrucesUSA

Personalised recommendations