Identify Subconscious Visual Response from Brain Signals

  • H. T. M. A. RiyadhEmail author
  • Jahangir Hossain Bhuyain
  • Zehara Zebin
  • Khandaker Tabin Hasan
  • A. Z. M. Ehtesham Chowdhury
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 722)


Subconsciously, humans can recognize objects and events from various depths of memory. When such things are experienced, our brain responds with certain signals. In this research, we have identified specific bands of signals that become distinct while experiencing memorized visual objects in short bursts of time. Rapid serial visual presentation (RSVP) of images where recognition time is less than the time taken for conscious visual recognition of target images are about 13 ms/image. Subconscious reflection has a relationship with retinal response particularly in pupil dilation. So, we have assumed that the occipital lobe, that is responsible for our sight, visual stimuli and recalling old memories, gives a retinal response and is associated with the memorized object of interest. A set of 200 grayscale images, including the image of interest, were presented for 6 to 12 ms intervals, in RSVP series, to human subjects. When the target image(s) slides change, subconsciously, the retina responds in connection with neural activities. These neural activities are the action of neurons and generate neural signals. Those were captured through an EEG device. Analyzing the behavior and the amplitude of the EEG signals, we have found that the subconscious visual response has a very high frame rate.


RSVP Recognition Identification Retinal response  Subconscious Memorized object 



Foremost, we would like to express our sincere gratitude to all the volunteers who participated in this nonpaid research and gave us their valuable time in cooperation with us.


  1. 1.
    Hubel, D.: Eye, Brain, and Vision. Harvard Medical School (2009)Google Scholar
  2. 2.
    Potter, M., Wyble, B., Hagmann, C., McCourt, E.: Detecting meaning in RSVP at 13 ms per picture. Attention Percept. Psychophysics 76(2), 270–279 (2013)CrossRefGoogle Scholar
  3. 3.
    Brewer, J.B., Zhao, Z., Desmond, J.E., Glover, G.H., Gabrieli, J.D.E.: Making memories: brain activity that predicts how well visual experience will be remembered. Science 281(5380), 1185–1187 (2002)CrossRefGoogle Scholar
  4. 4.
    Decision-Making and Control in the Brain (2017). Accessed 26 May 2017
  5. 5.
    Glascher, J., Adolphs, R., Damasio, H., Bechara, A., Rudrauf, D., Calamia, M., Paul, L., Tranel, D.: Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proc. Nat. Acad. Sci. 109(36), 14681–14686 (2012)CrossRefGoogle Scholar
  6. 6.
    McKeeff, T., Remus, D., Tong, F.: Temporal limitations in object processing across the human ventral visual pathway. J. Neurophysiol. 98(1), 382–393 (2007)CrossRefGoogle Scholar
  7. 7.
    Homan, R., Herman, J., Purdy, P.: Cerebral location of international 10–20 system electrode placement. Electroencephalogr. Clin. Neurophysiol. 66(4), 376–382 (1987)CrossRefGoogle Scholar
  8. 8.
    Hagmann, C.E., Potter, M.C.: Ultrafast scene detection and recognition with limited visual information. Vis. Cogn. 24(1), 2–14 (2016). CrossRefGoogle Scholar
  9. 9.
    Ehtesham Chowdhury, A.Z.M., Hasan, T., Rahman, M.: Visual content search using subconscious retinal response. In: The Fifth IEEE Region 10 (Asia Pacific) Humanitarian Technology Conference, 21–23 December 2017, Dhaka, Bangladesh (R10HTC) (2017)Google Scholar
  10. 10.
    Jovasevic, V., Corcoran, K., Leaderbrand, K., Yamawaki, N., Guedea, A., Chen, H., Shepherd, G., Radulovic, J.: GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat. Neurosci. 18(9), 1265–1271 (2015)CrossRefGoogle Scholar
  11. 11.
    Darwin, C., Maudsley, H.: The expression of emotions in man and animals. Am. J. Psychol. 94(1), 181 (1981) Google Scholar
  12. 12.
    The expression of the emotions in man and animals Charles Darwin. Am. Biol. Teacher 61(6), 470–471 (1999)Google Scholar
  13. 13.
    Reinagel, P., Dwayne Godwin, S., Sherman, M., Koch, C.: Encoding of visual information by LGN bursts. J. Neurophysiol. 81(5), 2558–2569 (1999)CrossRefGoogle Scholar
  14. 14.
    Visual system (2017). Accessed 26 May 2017
  15. 15.
    The brain’s cerebral cortex, or neocortex, has specialized areas for language, sensory, and emotion processing (2017).
  16. 16. Occipital Lobe (2017).
  17. 17.
    Neuroscience for Kids - The Eye and Its Connections (2017). Accessed 26 May 2017
  18. 18.
    Caton, R.: The electric currents of the brain. Br. Med. J. 2, 278 (1875)Google Scholar
  19. 19.
    Berger, H.: Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten 106(1), 577–584 (1937)CrossRefGoogle Scholar
  20. 20.
    Adrian, E., Matthews, B.: The interpretation of potential waves in the cortex. J. Physiol. 81(4), 440–471 (1934)CrossRefGoogle Scholar
  21. 21.
    da Silva, F.: EEG: origin and measurement. In: EEG - fMRI, pp 19–38 (2009)Google Scholar
  22. 22.
    Egelhaaf, M.: Neural encoding of behaviourally relevant visual-motion information in the fly. Trends Neurosci. 25(2), 96–102 (2002)CrossRefGoogle Scholar
  23. 23.
    Brewer, J.: Making memories: brain activity that predicts how well visual experience will be remembered. Science 281(5380), 1185–1187 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • H. T. M. A. Riyadh
    • 1
    Email author
  • Jahangir Hossain Bhuyain
    • 1
  • Zehara Zebin
    • 1
  • Khandaker Tabin Hasan
    • 1
  • A. Z. M. Ehtesham Chowdhury
    • 1
  1. 1.American International University-BangladeshDhakaBangladesh

Personalised recommendations