Advertisement

Intelligent Visual Analytics – a Human-Adaptive Approach for Complex and Analytical Tasks

  • Kawa NazemiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 722)

Abstract

Visual Analytics enables solving complex and analytical tasks by combining automated data analytics methods and interactive visualizations. The complexity of tasks, the huge amount of data and the complex visual representation may overstrain the users of such systems. Intelligent and adaptive visualizations system show already promising results to bridge the gap between human and the complex visualization. We introduce in this paper a revised version of layer-based visual adaptation model that considers the human perception and cognition abilities. The model is then used to enhance the most popular Visual Analytics model to enable the development of Intelligent Visual Analytics systems.

Keywords

Intelligent information systems Visual analytics Adaptive information visualization Artifical intelligence Human-systems integration 

Notes

Acknowledgment

This paper is part of the research work of the “Research Group on Digital Communication and Media Innovation”.

References

  1. 1.
    Nazemi, K.: Adaptive Semantics Visualization. Studies in Computational Intelligence, p. 422. Springer Interntational Publishing (2016). ISBN: 978-3-319-30815-9. https://doi.org/10.1007/978-3-319-30816-6
  2. 2.
    Gotz, D., Lu, Z., When, J., Kissa, P., Cao, N., Qian, W.H., Liu, S.X., Zhou, M.X.: HARVEST: an intelligent visual analytic tool for the masses. In: Proceedings of IVITA 2010, pp. 1–4. ACM, New York (2010)Google Scholar
  3. 3.
    Ahn, J.-W., Brusilovsky, P.: Adaptive visualization for exploratory information retrieval. Inf. Process. Manage. 49(5), 1139–1164 (2013)CrossRefGoogle Scholar
  4. 4.
    Steichen, B., Carenini, G., Conati, C.: User-adaptive information visualization: using eye gaze data to infer visualization tasks and user cognitive abilities. In: Proceedings of IUI 2013, IUI 2013, pp. 317–328. ACM, NewYork (2013)Google Scholar
  5. 5.
    Bai, X., White, D., Sundaram, D.: Contextual adaptive knowledge visualization environments. Electron. J. Knowl. Manag. 10(1), 01–14 (2012)Google Scholar
  6. 6.
    Wiza, W., Walczak, K., Cellary, W.: AVE - method for 3D visualization of search results. In: Web Engineering. Lecture Notes in Computer Science, vol. 2722, pp. 204–207. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Brusilovsky, P., Ahn, J.W., Dumitriu, T., Yudelson, M.: Adaptive knowledge-based visualization for accessing educational examples. In: 2006 Tenth International Conference on Information Visualization, IV 2006, pp. 142–150 (2006)Google Scholar
  8. 8.
    Shi, L., Cao, N., Liu, S., Qian, W., Tan, L., Wang, G., Sun, J., Lin, C.-Y.: HiMAP: adaptive visualization of large-scale online social networks. In: 2009 IEEE Pacific Visualization Symposium, PacificVis 2009, pp. 41–48 (2009)Google Scholar
  9. 9.
    Gotz, D., Zhou, M.X.: An empirical study of user interaction behavior during visual analysis. Technical report, IBM Research Division, NY (2008)Google Scholar
  10. 10.
    Gotz, D., Wen, Z.: Behavior-driven visualization recommendation. In: Proceedings IUI 2009, pp. 315–324. ACM, New York (2009)Google Scholar
  11. 11.
    Gotz, D., Zhou, M.X.: Characterizing users’ visual analytic activity for insight provenance. In: 2008 IEEE Symposium on Visual Analytics Science and Technology, VAST 2008, pp. 123–130 (2008)Google Scholar
  12. 12.
    Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph. 5, 110–141 (1986)CrossRefGoogle Scholar
  13. 13.
    Mackinlay, J., Hanrahan, P., Stolte, C.: Show me: automatic presentation for visual analysis. IEEE Trans. Vis. Comput. Graph. 13(6), 1137–1144 (2007)CrossRefGoogle Scholar
  14. 14.
    Golemati, M., Halatsis, C., Vassilakis, C., Katifori, A., Lepouras, G.: A context-based adaptive visualization environment. In: Proceedings of the conference on Information Visualization, IV 2006, pp. 62–67. IEEE Computer Society, Washington, DC (2006)Google Scholar
  15. 15.
    Golemati, M., Vassilakis, C., Katifori, A., Lepouras, G., Halatsis, C.: Context and adaptivity-driven visualization method selection. In: Mourlas, C., Germanakos, P. (eds.) Intelligent User Interfaces: Adaptation and Personalization Systems and Technologies. IGI Global (2009)Google Scholar
  16. 16.
    Bai, X., White, D., Sundaram, D.: Adaptive knowledge visualization systems: a proposal and implementation. IJEEEE 1(3), 193–200 (2011)Google Scholar
  17. 17.
    Voigt, M., Franke, M., Meiner, K.: Capturing and reusing empirical visualization knowledge. In: UMAP 2013 Extended Proceedings (2013)Google Scholar
  18. 18.
    de Jongh, M., Dudas, P.M., Brusilovsky, P.: Adaptive visualization of research communities. In: Berkovsky, P., et al. (eds.) UMAP 2013 Extended Proceedings, First International Workshop on User-Adaptive Visualizations (WUAV) (2013)Google Scholar
  19. 19.
    Keim, D., Mansmann, F., Schneidewind, J., Ziegler, H., Thomas, J.: Visual analytics: scope and challenges. In: Visual Data Mining: Theory, Techniques and Tools for Visual Analytics. LNCS. Springer, December 2008Google Scholar
  20. 20.
    Nazemi, K., Kohlhammer, J.: Visual variables in adaptive visualizations. In: Extended Proceedings of UMAP 2013, CEUR Workshop Proceedings, vol. 997 (2013). ISSN 1613-0073Google Scholar
  21. 21.
    Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49(4), 41–46 (2006)CrossRefGoogle Scholar
  22. 22.
    Bertin, J.: Semiology of Graphics. University of Wisconsin Press, Madison (1983)Google Scholar
  23. 23.
    Ware, C.: Information Visualization Perception for Design. Morgan Kaufmann (Elsevier), Boston (2013)Google Scholar
  24. 24.
    Rensink, R.A.: Change detection. Annu. Rev. Psychol. 53, 245–277 (2002)CrossRefGoogle Scholar
  25. 25.
    Nazemi, K., Stab, C., Fellner, D.W.: Interaction analysis: an algorithm for interaction prediction and activity recognition in adaptive systems. In: IEEE International Conference on Intelligent Computing and Intelligent Systems, Proceedings, pp. 607–612. IEEE Press, New York (2010)Google Scholar
  26. 26.
    Nazemi, K., Stab, C., Fellner, D.W.: Interaction Analysis for Adaptive User Interfaces Advanced Intelligent Computing Theories and Applications, pp. 362–371. Springer (2010)Google Scholar
  27. 27.
    Nazemi, K., Retz, R., Burkhardt, D., Kuijper, A., Kohlhammer, J., Fellner, D.W.: Visual trend analysis with digital libraries. In: Proceedings of the 15th International Conference on Knowledge Technologies and Data-driven Business. ACM, New York (2015)Google Scholar
  28. 28.
    Thomas, J.J., Cook, K.A.: Illuminating the Path: The Research and Development Agenda for Visual Analytics. National Visualization and Analytics Center (2005)Google Scholar
  29. 29.
    Keim, D., Kohlhammer, J., Ellis, G., Mansmann, F.: Matering the Information Age Solving Problems with Visual Analytics. Eurographics Association (2010)Google Scholar
  30. 30.
    Munzner, T.: A nested model for visualization design and validation. IEEE Trans. Vis. Comput. Graph. 15(6), 921–928 (2009)CrossRefGoogle Scholar
  31. 31.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Darmstadt University of Applied SciencesDarmstadtGermany

Personalised recommendations