Skip to main content

Deformed Carbon Nanotubes

  • Chapter
  • First Online:
Nano-scale Heat Transfer in Nanostructures

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 753 Accesses

Abstract

Carbon nanotubes’ resilience to mechanical deformation is a potentially important feature for imparting tunable properties at the nanoscale. The influence of mechanical deformation on the thermal transport of carbon nanotubes is studied by non-equilibrium molecular dynamics. Nanotubes of different bending angles, lengths, diameters, chiralities, and degrees of twist are simulated in the regime in which the thermal transport extends from ballistic to diffusive. The study in purely bent carbon nanotubes settles the controversy around the differences between the current experimental and molecular dynamics measurements of the thermal transport in bent nanotubes. Collapsed carbon nanotubes, in contrast with graphene nanoribbons, which are known to exhibit substantial rough-edge and cross-plain phonon scatterings, preserve the quasiballistic phononic transport encountered in cylindrical nanotubes. Stacked-collapsed nanotube architectures, closely related with the strain-induced aligned tubes occurring in stretched nanotube sheets, are shown to inherit the ultrahigh thermal conductivities of individual tubes and are therefore proposed to form highways for efficient heat transport in lightweight composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Che J, Cagin T, Goddard III, A W (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11:65

    Article  Google Scholar 

  2. Fujii M et al (2005) Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett 95:065502

    Article  Google Scholar 

  3. Mingo N, Broido D (2005) Carbon nanotube ballistic thermal conductance and its limits. Phys Rev Lett 95:096105

    Article  Google Scholar 

  4. Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100

    Article  Google Scholar 

  5. Mingo N, Broido D (2005) Length dependence of carbon nanotube thermal conductivity and the ‘problem of long waves’. Nano Lett 5:1221–1225

    Article  Google Scholar 

  6. Shiomi J, Maruyama S (2008) Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes. Jpn J Appl Phys 47:2005

    Article  Google Scholar 

  7. Iijima S, Brabec C, Maiti A, Bernholc J (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104:2089–2092

    Article  Google Scholar 

  8. Demczyk B et al (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334:173–178

    Article  Google Scholar 

  9. Dumitrica T, Hua M, Yakobson BI (2006) Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc Natl Acad Sci 103:6105–6109

    Article  Google Scholar 

  10. Falvo MR et al (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389:582–584

    Article  Google Scholar 

  11. Hernandez E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and B x C y N z composite nanotubes. Phys Rev Lett 80:4502

    Article  Google Scholar 

  12. Zhang D-B, Dumitrică T (2008) Elasticity of ideal single-walled carbon nanotubes via symmetry-adapted tight-binding objective modeling. Appl Phys Lett 93:031919

    Article  Google Scholar 

  13. Zhang D-B, James R, Dumitrică T (2009) Electromechanical characterization of carbon nanotubes in torsion via symmetry adapted tight-binding objective molecular dynamics. Phys Rev B 80:115418

    Article  Google Scholar 

  14. Wang Q, Liew KM, Duan W (2008) Modeling of the mechanical instability of carbon nanotubes. Carbon 46:285–290

    Article  Google Scholar 

  15. Harris JM et al (2011) Electronic durability of flexible transparent films from type-specific single-wall carbon nanotubes. ACS Nano 6:881–887

    Article  Google Scholar 

  16. Abadi PPSS et al (2014) Reversible tailoring of mechanical properties of carbon nanotube forests by immersing in solvents. Carbon 69:178–187

    Article  Google Scholar 

  17. Panzer M et al (2008) Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J Heat Transf 130:052401

    Article  Google Scholar 

  18. Fabris D et al (2011) Application of carbon nanotubes to thermal interface materials. J Electron Packag 133:020902

    Article  Google Scholar 

  19. Cola BA, Xu X, Fisher TS (2007) Increased real contact in thermal interfaces: a carbon nanotube/foil material. Appl Phys Lett 90:093513

    Article  Google Scholar 

  20. Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Phy Rev B 59:2514

    Article  Google Scholar 

  21. Cao G, Chen X (2006) Buckling of single-walled carbon nanotubes upon bending: molecular dynamics simulations and finite element method. Phys Rev B 73:155435

    Article  Google Scholar 

  22. Nikiforov I, Zhang D-B, James RD, Dumitrică T (2010) Wavelike rippling in multiwalled carbon nanotubes under pure bending. Appl Phys Lett 96:123107

    Article  Google Scholar 

  23. Tsai P-C, Jeng Y-R, Huang Y-X, Wu K-T (2013) Buckling characterizations of an individual multi-walled carbon nanotube: insights from quantitative in situ transmission electron microscope nanoindentation and molecular dynamics. Appl Phys Lett 103:053119

    Article  Google Scholar 

  24. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  Google Scholar 

  25. Chopra NG, Benedict LX, Crespi VH, Cohen ML (1995) Fully collapsed carbon nanotubes. Nature 377:135

    Article  Google Scholar 

  26. Yu M-F, Kowalewski T, Ruoff RS (2001) Structural analysis of collapsed, and twisted and collapsed, multiwalled carbon nanotubes by atomic force microscopy. Phys Rev Lett 86:87

    Article  Google Scholar 

  27. Zhang C et al (2012) Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes. ACS Nano 6:6023–6032

    Article  Google Scholar 

  28. Choi D et al (2013) Fabrication and characterization of fully flattened carbon nanotubes: a new graphene nanoribbon analogue. Sci Rep 3:1617

    Article  Google Scholar 

  29. Hertel T, Walkup RE, Avouris P (1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B 58:13870

    Article  Google Scholar 

  30. Tersoff J, Ruoff R (1994) Structural properties of a carbon-nanotube crystal. Phys Rev Lett 73:676

    Article  Google Scholar 

  31. Liu S, Yue J, Wehmschulte RJ (2002) Large thick flattened carbon nanotubes. Nano Lett 2:1439–1442

    Article  Google Scholar 

  32. Xiao J et al (2007) Collapse and stability of single-and multi-wall carbon nanotubes. Nanotechnology 18:395703

    Article  Google Scholar 

  33. Liu HJ, Cho K (2004) A molecular dynamics study of round and flattened carbon nanotube structures. Appl Phys Lett 85:807–809

    Article  Google Scholar 

  34. Zhang D-B, Dumitrica T (2010) Effective strain in helical rippled carbon nanotubes: a unifying concept for understanding electromechanical response. ACS Nano 4:6966–6972

    Article  Google Scholar 

  35. Arias I, Arroyo M (2008) Size-dependent nonlinear elastic scaling of multiwalled carbon nanotubes. Phys Rev Lett 100:085503

    Article  Google Scholar 

  36. Wang C et al (2016) Buckling behavior of carbon nanotubes under bending: from ripple to kink. Carbon 102:224–235

    Article  Google Scholar 

  37. Jackman H, Krakhmalev P, Svensson K (2011) Measurements of the critical strain for rippling in carbon nanotubes. Appl Phys Lett 98:183104

    Article  Google Scholar 

  38. Ma J, Ni Y, Volz S, Dumitrică T (2015) Thermal transport in single-walled carbon nanotubes under pure bending. Phys Rev Appl 3:024014

    Article  Google Scholar 

  39. Ma J, Ni Y, Dumitrică T (2015) Thermal conductivity and phonon scattering in severely bent carbon nanotubes and bi-layer graphene. Mater Today Proc 2:3819–3823

    Article  Google Scholar 

  40. Siochi EJ, Harrison JS (2015) Structural nanocomposites for aerospace applications. MRS Bull 40:829

    Article  Google Scholar 

  41. Cheng Q, Wang B, Zhang C, Liang Z (2010) Functionalized carbon-nanotube sheet/bismaleimide nanocomposites: mechanical and electrical performance beyond carbon-fiber composites. Small 6:763

    Article  Google Scholar 

  42. Gspann TS et al (2017) High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology. Carbon 114:160

    Article  Google Scholar 

  43. Li S et al (2012) In situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretching. Carbon 50:3859

    Article  Google Scholar 

  44. Cheng Q et al (2009) High mechanical performance composite conductor: multi-walled carbon nanotube sheet/bismaleimide nanocomposites. Adv Funct Mat 19:3219

    Article  Google Scholar 

  45. Downes R et al (2015) Strain-induced alignment mechanisms of carbon nanotube networks. Adv Eng Mater 17:349

    Article  Google Scholar 

  46. Downes RD et al (2015) Geometrically constrained self-assembly and crystal packing of flattened and aligned carbon nanotubes. Carbon 93:953

    Article  Google Scholar 

  47. Elliott JA et al (2004) Collapse of single-wall carbon nanotubes is diameter dependent. Phys Rev Lett 92:095501

    Article  Google Scholar 

  48. Gao G, Çağin TW, Goddard A III (1998) Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnol 9:184

    Article  Google Scholar 

  49. Bae M-H et al (2013) Ballistic to diffusive crossover of heat flow in graphene ribbons. Nature Comm 4:1734

    Article  Google Scholar 

  50. Savin AV, Kivshar YS, Hu B (2010) Suppression of thermal conductivity in graphene nanoribbons with rough edges. Phys Rev B 82:195422

    Article  Google Scholar 

  51. Ghosh S et al (2010) Dimensional crossover of thermal transport in few-layer graphene. Nature Mat 9:555

    Article  Google Scholar 

  52. Zhong WR, Zhang MP, Ai BQ, Zheng DQ (2011) Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study. Appl Phys Lett 98:113107

    Article  Google Scholar 

  53. Barzegar HR et al (2017) Spontaneous twisting of a collapsed carbon nanotube. Nano Res 10:1942

    Article  Google Scholar 

  54. Plimpton SF (1995) Parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  MATH  Google Scholar 

  55. Cao A, Qu J (2012) Size dependent thermal conductivity of single-walled carbon nanotubes. J Appl Phys 112:013503

    Article  Google Scholar 

  56. Lee V, Chen R, Chang C-W (2013) Probing the limit of one-dimensional heat transfer under extreme bending strain. Phys Rev B 87:035406

    Article  Google Scholar 

  57. Chang C, Okawa D, Garcia H, Majumdar A, Zettl A (2007) Nanotube phonon waveguide. Phys Rev Lett 99:045901

    Article  Google Scholar 

  58. Volkov AN, Shiga T, Nicholson D, Shiomi J, Zhigilei LV (2012) Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials. J Appl Phys 111:053501

    Article  Google Scholar 

  59. Huang Z et al (2011) Temperature-dependent thermal conductivity of bent carbon nanotubes by molecular dynamics simulation. J Appl Phys 109:104316

    Article  Google Scholar 

  60. Nishimura F, Shiga T, Maruyama S, Watanabe K, Shiomi J (2012) Thermal conductance of buckled carbon nanotubes. Jpn J Appl Phys 51:015102

    Article  Google Scholar 

  61. Xu Z, Buehler MJ (2009) Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology 20:185701

    Article  Google Scholar 

  62. Dumitrică T, James RD (2007) Objective molecular dynamics. J Mech Phys Solids 55:2206–2236

    Article  MathSciNet  MATH  Google Scholar 

  63. James RD (2006) Objective structures. J Mech Phys Solids 54:2354–2390

    Article  MathSciNet  MATH  Google Scholar 

  64. Rurali R, Hernandez E (2003) Trocadero: a multiple-algorithm multiple-model atomistic simulation program. Comput Mater Sci 28:85–106

    Article  Google Scholar 

  65. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486

    Article  Google Scholar 

  66. Salaway RN, Zhigilei LV (2014) Molecular dynamics simulations of thermal conductivity of carbon nanotubes: resolving the effects of computational parameters. Int J Heat Mass Transf 70:954–964

    Article  Google Scholar 

  67. Lukes JR, Zhong H (2007) Thermal conductivity of individual single-wall carbon nanotubes. J Heat Transf 129:705–716

    Article  Google Scholar 

  68. Brenner DW et al (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783

    Article  Google Scholar 

  69. Nikiforov I, Dontsova E, James RD, Dumitrică T (2014) Tight-binding theory of graphene bending. Phys Rev B 89:155437

    Article  Google Scholar 

  70. Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett 61:2879

    Article  Google Scholar 

  71. Lindsay L, Broido D (2010) Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 81:205441

    Article  Google Scholar 

  72. Wang J, Wang J-S (2006) Carbon nanotube thermal transport: ballistic to diffusive. Appl Phys Lett 88:111909

    Article  Google Scholar 

  73. Zhu T, Ertekin E (2015) Resolving anomalous strain effects on two-dimensional phonon flows: the cases of graphene, boron nitride, and planar superlattices. Phys Rev B 91:205429

    Article  Google Scholar 

  74. Feng T, Qiu B, Ruan X (2015) Anharmonicity and necessity of phonon eigenvectors in the phonon normal mode analysis. J Appl Phys 117:195102

    Article  Google Scholar 

  75. Thomas JA et al (2010) Predicting phonon dispersion relations and lifetimes from the spectral energy density. Phys Rev B 81:081411

    Article  Google Scholar 

  76. Hu C-J, Cao B-Y (2013) Thermal resistance between crossed carbon nanotubes: molecular dynamics simulations and analytical modeling. J Appl Phys 114:224308

    Article  Google Scholar 

  77. Varshney V, Patnaik SS, Roy AK, Farmer BL (2010) Modeling of thermal conductance at transverse CNT−CNT interfaces. J Phys Chem C 114:16223

    Article  Google Scholar 

  78. Ni Y, Chalopin Y, Volz S (2013) Significant thickness dependence of the thermal resistance between few-layer graphenes. Appl Phys Lett 103:061906

    Article  Google Scholar 

  79. Dontsova E, Dumitrică T (2013) Nanomechanics of twisted mono- and few-layer graphene nanoribbons. J Phys Chem Lett 4:2010

    Article  Google Scholar 

  80. Ni Y, Han H, Volz S, Dumitricǎ T (2015) Nanoscale azide polymer functionalization: a robust solution for suppressing the carbon nanotube–polymer matrix thermal interface resistance. J Phys Chem C 119:12193

    Article  Google Scholar 

  81. Al-Ghalith J, Xu H, Dumitrică T (2017) Collapsed carbon nanotubes as building blocks for high-performance thermal materials. Phys Rev Materials 1:056001

    Article  Google Scholar 

Download references

Acknowledgments

Figures and table in Sect. 5.3 are all reprinted with permission from Ref. [38], Copyright (2014) by the American Physical Society.

Figures and table in Sect. 5.4 are all reprinted with permission from Ref. [81], Copyright (2017) by the American Physical Society.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Ghalith, J., Dumitrica, T. (2018). Deformed Carbon Nanotubes. In: Nano-scale Heat Transfer in Nanostructures. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-73882-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73882-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73881-9

  • Online ISBN: 978-3-319-73882-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics