Skip to main content

Finite Orthogonal Laurent Polynomials

  • Chapter
  • First Online:
The Mathematics of the Uncertain

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 142))

  • 1273 Accesses

Abstract

In this work, orthogonal Laurent polynomials on the real line associated with a finite family of classical orthogonal polynomials (the so called Romanovski–Hermite polynomial sequence) are discussed. Their explicit representation, a second order linear differential equation they satisfy as well as their orthogonality relations are obtained. The connection with a strong Stieltjes moment problem is discussed. The strong Gaussian quadrature formulae are also given. For such a family of orthogonal Laurent polynomials, a comparison with the classical Gaussian quadrature formulae is illustrated with some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De Andrade EXL, Bracciali CF, Sri Ranga A (2007) Another connection between orthogonal polynomials and \(L\)-orthogonal polynomials. J Math Anal Appl 330(1):114–132

    Article  MathSciNet  MATH  Google Scholar 

  2. Cochran L, Cooper SC (1992) Orthogonal Laurent polynomials on the real line. In: Cooper SC, Thron WJ (eds) Continued fractions and orthogonal functions, vol 154. Lecture notes in pure and applied mathematics. Marcel Dekker, New York, pp 47–100

    Google Scholar 

  3. Costa MS, Godoy E, Lamblém RL, Sri Ranga A (2012) Basic hypergeometric functions and orthogonal Laurent polynomials. Proc Amer Math Soc 140(6):2075–2089

    Article  MathSciNet  MATH  Google Scholar 

  4. Chihara TS (1978) An introduction to orthogonal polynomials. Gordon and Breach, New York

    MATH  Google Scholar 

  5. Gustafson PE, Hagler BA (1999) Gaussian quadrature rules and numerical examples for strong extensions of mass distribution functions. J Comput Appl Math 105(1–2):317–326

    Article  MathSciNet  MATH  Google Scholar 

  6. Hagler BA (1997) A transformation of orthogonal polynomial sequences into orthogonal Laurent polynomial sequences. PhD Thesis, University of Colorado, Colorado

    Google Scholar 

  7. Hagler BA, Jones WB, Thron WJ (1996) Orthogonal Laurent polynomials of Jacobi, Hermite, and Laguerre types. In: Jones WB, Sri Ranga A (eds) Orthogonal functions, moment theory, and continued fractions, vol 199. Lecture notes in pure and applied mathematics. Marcel Dekker, New York, pp 179–186

    Google Scholar 

  8. Hendriksen E, van Rossum H (1986) Orthogonal Laurent polynomials. Nederl Akad Wetensch Indag Math 48(1):17–36

    Article  MathSciNet  MATH  Google Scholar 

  9. Jones WB, Njåstad O (1999) Orthogonal Laurent polynomials and strong moment theory: a survey. J Comput Appl Math 105(1–2):51–91

    Article  MathSciNet  Google Scholar 

  10. Jones WB, Thron WJ (1981) Survey of continued fraction methods of solving moment problems and related topics. In: Jones WB, Thron WJ, Waadeland H (eds) Analytic theory of continued fractions, vol 932. Lecture notes in mathematics. Springer, Berlin, pp 4–37

    Chapter  Google Scholar 

  11. Jones WB, Thron WJ, Njåstad O (1984) Orthogonal Laurent polynomials and the strong Hamburger moment problem. J Math Anal Appl 98(2):528–554

    Article  MathSciNet  MATH  Google Scholar 

  12. Jones WB, Thron WJ, Waadeland H (1980) A strong Stieltjes moment problem. Trans Am Math Soc 261(2):503–528

    Article  MathSciNet  MATH  Google Scholar 

  13. Koekoek R, Lesky PA, Swarttouw RF (2010) Hypergeometric orthogonal polynomials and their \(q\)-analogues. Springer monographs in mathematics. Springer, Berlin

    Book  MATH  Google Scholar 

  14. Krylov VI (1962) Approximate calculation of integrals (translated by Stroud AH). Macmillan, New York

    Google Scholar 

  15. Masjed-Jamei M (2002) Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation. Integ Transf Spec Funct 13(2):169–191

    Article  MathSciNet  MATH  Google Scholar 

  16. Masjed-Jamei M (2004) Classical orthogonal polynomials with weight function \(((ax+b)^2+(cx+d)^2)^{-p} \exp (q\,{\rm {arctg}}((ax+b)/(cx+d)))\), \(x\in (-\infty ,\infty )\) and a generalization of \(T\) and \(F\) distributions. Integ Transf Spec Funct 15(2):137–153

    Google Scholar 

  17. Masjed-Jamei M, Marcellán F, Huertas EJ (2014) A finite class of orthogonal functions generated by Routh–Romanovski polynomials. Compl Var Ellip Equ 59(2):162–171

    Article  MathSciNet  MATH  Google Scholar 

  18. Malik P, Swaminathan A (2012) Derivatives of a finite class of orthogonal polynomials related to inverse gamma distribution. Appl Math Comput 218(11):6251–6262

    Article  MathSciNet  MATH  Google Scholar 

  19. Romanovski VI (1929) Sur quelques classes nouvelles de polynômes orthogonaux. C R Acad Sci Paris 188:1023–1025

    MATH  Google Scholar 

  20. Routh EJ (1884) On some properties of certain solutions of a differential equation of the second order. Proc Lond Math Soc 16:245–261

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first author (FM) has been supported by Dirección General de Investigación Científica y Técnica, Ministerio de Economía, Industria y Competitividad of Spain, grant MTM2015-65888-C4-2-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Marcellán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marcellán, F., Swaminathan, A. (2018). Finite Orthogonal Laurent Polynomials. In: Gil, E., Gil, E., Gil, J., Gil, M. (eds) The Mathematics of the Uncertain. Studies in Systems, Decision and Control, vol 142. Springer, Cham. https://doi.org/10.1007/978-3-319-73848-2_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73848-2_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73847-5

  • Online ISBN: 978-3-319-73848-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics