Skip to main content

On Some Properties of Beta-Generated Distributions

  • Chapter
  • First Online:
The Mathematics of the Uncertain

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 142))

  • 1264 Accesses

Abstract

This note is concerned with a broad family of univariate distributions, namely the class of the beta-generated distributions which is created on the basis of the beta distribution by incorporating on this classic model a parent distribution function F with respective density f. The class of beta-generated distributions have received a great attention in the recent literature on distribution theory. The aim of this note is to provide with some properties and characterizations of the beta-generated distributions which are already known from the theory of order statistics.

It is a great honor to present this work to the memory of my beloved friend Pedro Gil, an exceptional scientist and an outstanding human personality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akinsete A, Famoye F, Lee C (2008) The beta-Pareto distribution. Statistics 42:547–563

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexander C, Sarabia JM (2010) Generalized beta generated distributions. ICMA centre discussion papers in finance DP2010-09

    Google Scholar 

  3. Alexander C, Cordeiro GM, Ortega EMM, Sarabia JM (2012) Generalized beta-generated distributions. Comput Stat Data Anal 56:1880–1897

    Article  MathSciNet  MATH  Google Scholar 

  4. Aliprantis CD, Burkinshaw O (1998) Principles of real analysis. Academic Press, San Diego

    MATH  Google Scholar 

  5. Alzaatreh A, Lee C, Famoye F (2014) The gamma-normal distribution: properties and applications. Comput Stat Data Anal 69:67–80

    Article  MathSciNet  Google Scholar 

  6. Asadi M, Ebrahimi N, Hamedani GG, Soofi E (2006) Information measures for Pareto distributions and order statistics. In: Balakrishnan N, Castillo E, Sarabia JM (eds) Advances in distribution theory, order statistics, and inference. Birkhäuser, Boston

    Google Scholar 

  7. Baratpour S, Ahmadi J, Arghami NR (2007) Some characterizations based on entropy of order statistics and record values. Commun Stat-Theor Meth 36:47–57

    Article  MathSciNet  MATH  Google Scholar 

  8. Barreto-Souza W, Santos AHS, Cordeiro GM (2010) The beta generalized exponential distribution. J Stat Comput Simul 80:159–172

    Article  MathSciNet  MATH  Google Scholar 

  9. Cordeiro GM, de Castro M (2011) A new family of generalized distributions. J Stat Comput Simul 81:883–893

    Article  MathSciNet  MATH  Google Scholar 

  10. Eugene N, Lee C, Famoye F (2002) Beta-normal distribution and its applications. Commun Stat Theor Meth 31:497–512

    Article  MathSciNet  MATH  Google Scholar 

  11. Gradshteyn IS, Ryzhik IM (1965) Table of integrals series and products. Academic Press, New York

    MATH  Google Scholar 

  12. Jones MC (2004) Families of distributions arising from distributions of order statistics. Test 13:1–43

    Article  MathSciNet  MATH  Google Scholar 

  13. Kullback S (1959) Information theory and statistics. Wiley, New York

    MATH  Google Scholar 

  14. Lee C, Famoye F, Alzaatreh A (2013) Methods for generating families of continuous distribution in the recent decades. WIREs Comput Stat 5:219–238

    Article  Google Scholar 

  15. Nadarajah S, Kotz S (2006) The beta exponential distribution. Reliab Eng Syst Saf 91:689–697

    Article  Google Scholar 

  16. Paranaiba PF, Ortega EMM, Cordeiro GM, Pescim RR (2010) The beta burr XII distribution with application to lifetime data. Comput Stat Data Anal 55:1118–1136

    Article  MathSciNet  MATH  Google Scholar 

  17. Zografos K (2008) On some beta generated distributions and their maximum entropy characterization: the beta-Weibull distribution. In: Barnett NS, Dragomir SS (eds) Advances in inequalities from probability theory & statistics. Nova Science Publishers, New Jersey

    Google Scholar 

  18. Zografos K (2011) Generalized beta generated-II distributions. In: Pardo L, Balakrishnan N, Gil MA (eds) Modern mathematical tools and techniques in capturing complexity. Springer, Berlin

    Google Scholar 

  19. Zografos K, Balakrishnan N (2009) On families of beta- and generalized gamma- generated distributions and associated inference. Stat Meth 6:344–362

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Zografos .

Editor information

Editors and Affiliations

5 Appendix: Proof of Proposition 2.2

5 Appendix: Proof of Proposition 2.2

\(\left( \Longrightarrow \right) \) Suppose that \(r_{\theta }(x)= \frac{f_{\theta }(x)}{1-F_{\theta }(x)}=w(\theta ),\theta \in \varTheta \subseteq \mathbb {R}\). Then,

$$\begin{aligned} \begin{array}{ll} \mathscr {H}_{Sh}(f_{\theta }) &{} =-\int _{\mathbb {R}} f_{\theta }(x)\ln f_{\theta }(x)dx \\ &{} =-\int _{\mathbb {R}} f_{\theta }(x)\ln \left[ r_{\theta }(x)\left( 1-F_{\theta }(x)\right) \right] dx \\ &{} =-\ln w(\theta )-\int _{\mathbb {R}} f_{\theta }(x)\ln \left( 1-F_{\theta }(x)\right) dx, \end{array} \end{aligned}$$

or

$$\begin{aligned} \mathscr {H}_{Sh}(f_{\theta })=-\ln w(\theta )-\int _{\mathbb {R}} B(1,1)g_{F_{\theta }}^{1,1}(x)\ln \left( 1-F_{\theta }(x)\right) dx. \end{aligned}$$

Taking into account that \(B(1,1)=1\) and using Lemma 1(b) of Zografos and Balakrishnan [19], we get

$$\begin{aligned} \mathscr {H}_{Sh}(f_{\theta })=-\ln w(\theta )-\left[ \varPsi (1)-\varPsi (2)\right] . \end{aligned}$$

Based on

$$\begin{aligned} \varPsi (x+1)-\varPsi (x)=\frac{1}{x}, \end{aligned}$$
(7)

(cf. Gradshteyn and Ryzhik [11, §. 365]), it is obtained that,

$$\begin{aligned} \mathscr {H}_{Sh}(f_{\theta })=-\ln w(\theta )+1. \end{aligned}$$
(8)

On the other hand,

$$\begin{aligned} \begin{array}{ll} \mathscr {H}_{Sh}\left( g_{F_{\theta }}^{1,\beta }\right) &{} =-\int _{\mathbb {R}} g_{F_{\theta }}^{1,\beta }(x)\ln g_{F_{\theta }}^{1,\beta }(x)dx \\ &{} =-\int _{\mathbb {R}} g_{F_{\theta }}^{1,\beta }(x)\ln \left[ \frac{1}{B(1,\beta )} f_{\theta }(x)\left( 1-F_{\theta }(x)\right) ^{\beta -1}\right] dx \\ &{} =-\int _{\mathbb {R}} g_{F_{\theta }}^{1,\beta }(x)\ln \left[ \frac{1}{B(1,\beta )} r_{\theta }(x)\left( 1-F_{\theta }(x)\right) ^{\beta }\right] dx \end{array} \end{aligned}$$
(9)

and taking into account that \(r_{\theta }(x)=w(\theta )\) and \(B(1,\beta )=1/\beta \) it is obtained that

$$\begin{aligned} \mathscr {H}_{Sh}\left( g_{F_{\theta }}^{1,\beta }\right) =-\ln \beta -\ln w(\theta )-\beta \int _{\mathbb {R}} g_{F_{\theta }}^{1,\beta }(x)\ln \left( 1-F_{\theta }(x)\right) dx. \end{aligned}$$

Using again Lemma 1(b) of Zografos and Balakrishnan [19] and Eq. (7) above,

$$\begin{aligned} \begin{array}{ll} \mathscr {H}_{Sh}\left( g_{F_{\theta }}^{1,\beta }\right) &{} =-\ln \beta -\ln w(\theta )-\beta \left[ \varPsi (\beta )-\varPsi (\beta +1)\right] \\ &{} =-\ln \beta -\ln w(\theta )+1. \end{array} \end{aligned}$$
(10)

Equations (8) and (10) lead now to the desired result.

\(\left( \Longleftarrow \right) \) Suppose that \(\mathscr {H} _{Sh}(f_{\theta })-\mathscr {H}_{Sh}(g_{F_{\theta }}^{1,\beta })=\ln \beta \), for \(\beta \ge 1.\) Based on (9) and on the identity \(B(1,\beta )=1/\beta ,\)

$$\begin{aligned} \mathscr {H}_{Sh}\left( g_{F_{\theta }}^{1,\beta }\right) =-\ln \beta -\beta \int _{\mathbb {R}} g_{F_{\theta }}^{1,\beta }(x)\ln \left( 1-F_{\theta }(x)\right) dx-\int _{\mathbb {R}} g_{F_{\theta }}^{1,\beta }(x)\ln r_{\theta }(x)dx. \end{aligned}$$

Using Lemma 1(b) of Zografos and Balakrishnan [19] and Eq. (7), we obtain

$$\begin{aligned} \int _{\mathbb {R}} g_{F_{\theta }}^{1,\beta }(x)\ln \left( 1-F_{\theta }(x)\right) dx=\varPsi (\beta )-\varPsi (\beta +1)=-\frac{1}{\beta }. \end{aligned}$$

Then, the above formula for \(\mathscr {H}_{Sh}\left( g_{F_{\theta }}^{1,\beta }\right) \) is simplified as follows,

$$\begin{aligned} \begin{array}{ll} \mathscr {H}_{Sh}\left( g_{F_{\theta }}^{1,\beta }\right) &{} =-\ln \beta +1-\int _{\mathbb {R}} g_{F_{\theta }}^{1,\beta }(x)\ln r_{\theta }(x)dx \\ &{} =-\ln \beta +1-\int _{\mathbb {R}} \frac{1}{B(1,\beta )}f_{\theta }(x)\left( 1-F_{\theta }(x)\right) ^{\beta -1}\ln r_{\theta }(x)dx \\ &{} =-\ln \beta +1-\beta \int _{\mathbb {R}} f_{\theta }(x)\left( 1-F_{\theta }(x)\right) ^{\beta -1}\ln r_{\theta }(x)dx. \end{array} \end{aligned}$$

Because, by hypothesis, \(\mathscr {H}_{Sh}(f_{\theta })-\mathscr {H} _{Sh}(g_{F_{\theta }}^{1,\beta })=\ln \beta \), using the previous expression for \(\mathscr {H}_{Sh}\left( g_{F_{\theta }}^{1,\beta }\right) \), it is obtained

$$\begin{aligned} \mathscr {H}_{Sh}(f_{\theta })-1+\beta \int _{\mathbb {R}} f_{\theta }(x)\left( 1-F_{\theta }(x)\right) ^{\beta -1}\ln r_{\theta }(x)dx=0. \end{aligned}$$
(11)

Applying the transformation \(u=1-F_{\theta }(x)\) to the last integral

$$\begin{aligned} \int _{\mathbb {R}} f_{\theta }(x)\left( 1-F_{\theta }(x)\right) ^{\beta -1}\ln r_{\theta }(x)dx=\int _{0}^{1} u^{\beta -1}\ln r_{\theta }\left( F_{\theta }^{-1}(1-u)\right) du. \end{aligned}$$
(12)

Equations (11) and (12) lead to

$$\begin{aligned} \mathscr {H}_{Sh}(f_{\theta })-1+\beta \int _{0}^{1} u^{\beta -1}\ln r_{\theta }\left( F_{\theta }^{-1}(1-u)\right) du=0 \end{aligned}$$

and taking into account that \(\mathscr {H}_{Sh}(f_{\theta })\) does not depend on x or u,

$$\begin{aligned} \beta \int _{0}^{1} u^{\beta -1}\left\{ \mathscr {H}_{Sh}(f_{\theta })-1+\ln r_{\theta }\left( F_{\theta }^{-1}(1-u)\right) \right\} du=0. \end{aligned}$$

In view of Exercise 4 of Aliprantis and Burkinshaw (see [4, p. 90]) for \( n=\beta -1, n \ge 0,\) it is obtained that

$$\begin{aligned} \ln r_{\theta }\left( F_{\theta }^{-1}(1-u)\right) +\mathscr {H} _{Sh}(f_{\theta })-1=0, \ \text { for }\beta \ge 1. \end{aligned}$$

The result now follows by using a similar argument as that of the last two lines in the proof of Theorem 2.1 of Barapour et al. [7].    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zografos, K. (2018). On Some Properties of Beta-Generated Distributions. In: Gil, E., Gil, E., Gil, J., Gil, M. (eds) The Mathematics of the Uncertain. Studies in Systems, Decision and Control, vol 142. Springer, Cham. https://doi.org/10.1007/978-3-319-73848-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73848-2_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73847-5

  • Online ISBN: 978-3-319-73848-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics