Skip to main content

Detecting Change-Points in the Time Series of Surfaces Occupied by Pre-defined NDVI Categories in Continental Spain from 1981 to 2015

  • Chapter
  • First Online:
The Mathematics of the Uncertain

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 142))

Abstract

The free access to satellite images since more than 40 years ago has provoked a rapid increase of multitemporal derived information of remote sensing data that should be summarized and analyzed for future inferences. In particular, the study of trends and trend changes is of crucial interest in many studies of phenology, climatology, agriculture, hydrology, geology or many other environmental disciplines. Overall, the normalized difference vegetation index (NDVI), as a satellite derived variable, plays a crucial role because of its usefulness for vegetation and landscape characterization, land use and land cover mapping, environmental monitoring, climate change or crop prediction models. Since the eighties, it can be retrieved all over the world from different satellites. In this work we propose to analyze its temporal evolution, looking for breakpoints or change-points in trends of the surfaces occupied by four NDVI classifications made in Spain from 1981 to 2015. The results show a decrease of bare soils and semi-bare soils starting in the middle nineties or before, and a slight increase of middle-vegetation and high-vegetation soils starting in 1990 and 2000 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed M, Else B, Eklundh L, Ard J, Seaquist J (2017) Dynamic response of ndvi to soil moisture variations during different hydrological regimes in the sahel region. Int J Remote Sens 38(19):5408–5429

    Article  Google Scholar 

  2. Antoch J, Hušková M, Prášková Z (1997) Effect of dependence on statistics for determination of change. J Stat Plan Inference 60(2):291–310

    Article  MathSciNet  MATH  Google Scholar 

  3. Atzberger C, Klisch A, Mattiuzzi M, Vuolo F (2013) Phenological metrics derived over the european continent from ndvi3g data and modis time series. Remote Sens 6(1):257–284

    Article  Google Scholar 

  4. Auger IE, Lawrence CE (1989) Algorithms for the optimal identification of segment neighborhoods. Bull Math Biol 51(1):39–54

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai J, Perron P (2003) Critical values for multiple structural change tests. Econ J 6(1):72–78

    MathSciNet  MATH  Google Scholar 

  6. Bolton RJ, Hand DJ (2002) Statistical fraud detection: a review. Stat Sci 17(3):235–249

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen J, Gupta AK (2011) Parametric statistical change point analysis: with applications to genetics, medicine, and finance. Springer, Heidelberg

    MATH  Google Scholar 

  8. Csörgö M, Horváth L (1997) Limit theorems in change-point analysis, vol 18. Wiley, New York

    MATH  Google Scholar 

  9. Detsch F (2016) Gimms: download and process GIMMS NDVI3g data. https://CRAN.R-project.org/package=gimms

  10. Edwards AW, Cavalli-Sforza LL (1965) A method for cluster analysis. Biometrics 21(2):362–375

    Article  Google Scholar 

  11. Hijmans RJ (2015) Raster: geographic data analysis and modeling. https://CRAN.R-project.org/package=raster

  12. Holben BN (1986) Characteristics of maximum-value composite images from temporal avhrr data. Int J Remote Sens 7(11):1417–1434

    Article  Google Scholar 

  13. James NA, Matteson DS (2014) ecp: an R package for nonparametric multiple change point analysis of multivariate data. J Stat Softw 62(7):1–25

    Article  Google Scholar 

  14. de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011) Analysis of monotonic greening and browning trends from global ndvi time-series. Remote Sens Environ 115(2):692–702

    Article  Google Scholar 

  15. Julien Y, Sobrino JA, Mattar C, Ruescas AB, Jiménez-Muñoz JC, Sòria G, Hidalgo V, Atitar M, Franch B, Cuenca J (2011) Temporal analysis of normalized difference vegetation index (ndvi) and land surface temperature (lst) parameters to detect changes in the iberian land cover between 1981 and 2001. Int J Remote Sens 32(7):2057–2068

    Google Scholar 

  16. Kern A, Marjanović H, Barcza Z (2016) Evaluation of the quality of ndvi3g dataset against collection 6 modis ndvi in central Europe between 2000 and 2013. Remote Sens 8(11):955

    Article  Google Scholar 

  17. Killick R, Eckley IA (2014) Changepoint: an R package for changepoint analysis. J Stat Softw 58(3):1–19

    Article  Google Scholar 

  18. Killick R, Fearnhead P, Eckley IA (2012) Optimal detection of changepoints with a linear computational cost. J Am Stat Assoc 107(500):1590–1598

    Article  MathSciNet  MATH  Google Scholar 

  19. Killick R, Haynes K, Eckley IA (2016) Changepoint: an R package for changepoint analysis. https://CRAN.R-project.org/package=changepoint

  20. Li H, Wang C, Zhang L, Li X, Zang S (2017) Satellite monitoring of boreal forest phenology and its climatic responses in Eurasia. Int J Remote Sens 38(19):5446–5463

    Article  Google Scholar 

  21. Li Z, Huffman T, McConkey B, Townley-Smith L (2013) Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series modis ndvi with climate and stocking data. Remote Sens Environ 138:232–244

    Article  Google Scholar 

  22. Matteson DS, James NA (2014) A nonparametric approach for multiple change point analysis of multivariate data. J Am Stat Assoc 109(505):334–345

    Article  MathSciNet  MATH  Google Scholar 

  23. Militino AF, Ugarte MD, Pérez-Goya U (2017) Stochastic spatio-temporal models for analysing ndvi distribution of gimms ndvi3g images. Remote Sens 9(1):76

    Article  Google Scholar 

  24. Neeti N, Eastman JR (2011) A contextual Mann–Kendall approach for the assessment of trend significance in image time series. Trans GIS 15(5):599–611

    Article  Google Scholar 

  25. Pinzon JE, Tucker CJ (2014) A non-stationary 1981–2012 avhrr ndvi3g time series. Remote Sens 6(8):6929–6960

    Article  Google Scholar 

  26. R Core Team (2017) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/

  27. Rouse J Jr, Haas R, Schell J, Deering D (1974) Monitoring vegetation systems in the great plains with erts. NASA spec publ 351:309

    Google Scholar 

  28. Scott AJ, Knott M (1974) A cluster analysis method for grouping means in the analysis of variance. Biometrics 30(3):507–512

    Article  MATH  Google Scholar 

  29. Sen A, Srivastava MS (1975) On tests for detecting change in mean. Ann Stat 3(1):98–108

    Article  MathSciNet  MATH  Google Scholar 

  30. Sobrino JA, Julien Y, Morales L (2011) Changes in vegetation spring dates in the second half of the twentieth century. Int J Remote Sens 32(18):5247–5265

    Article  Google Scholar 

  31. Talih M, Hengartner N (2005) Structural learning with time-varying components: tracking the cross-section of financial time series. J R Stat Soc Ser B 67(3):321–341

    Article  MathSciNet  MATH  Google Scholar 

  32. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  33. Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended avhrr 8-km ndvi dataset compatible with modis and spot vegetation ndvi data. Int J Remote Sens 26(20):4485–4498

    Article  Google Scholar 

  34. Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010a) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114(1):106–115

    Article  Google Scholar 

  35. Verbesselt J, Hyndman R, Zeileis A, Culvenor D (2010b) Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens Environ 114(12):2970–2980

    Article  Google Scholar 

  36. Wang J, Dong J, Liu J, Huang M, Li G, Running SW, Smith WK, Harris W, Saigusa N, Kondo H, Liu Y, Hirano T, Xiao X (2014) Comparison of gross primary productivity derived from gimms ndvi3g, gimms, and modis in southeast Asia. Remote Sens 6(3):2108–2133

    Article  Google Scholar 

  37. Yuan X, Li L, Chen X, Shi H (2015) Effects of precipitation intensity and temperature on ndvi-based grass change over northern china during the period from 1982 to 2011. Remote Sens 7(8):10164–10183

    Article  Google Scholar 

  38. Zeileis A (2006) Implementing a class of structural change tests: an econometric computing approach. Comput Stat Data Anal 50:2987–3008

    Google Scholar 

  39. Zeileis A, Kleiber C, Krämer W, Hornik K (2003) Testing and dating of structural changes in practice. Comput Stat Data Anal 44:109–123

    Google Scholar 

  40. Zeileis A, Leisch F, Hornik K, Kleiber C (2002) Strucchange: an R package for testing for structural change in linear regression models. J Stat Softw 7(2):1–38

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Spanish Ministry of Economy, Industry, and Competitiveness (project MTM2017-82553-R) jointly financed with the European Regional Development Fund (FEDER), the Government of Navarre (PI015-2016 and PI043-2017 projects) and the Fundación CAN-Obra Social Caixa 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana F. Militino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Militino, A.F., Ugarte, M.D., Pérez-Goya, U. (2018). Detecting Change-Points in the Time Series of Surfaces Occupied by Pre-defined NDVI Categories in Continental Spain from 1981 to 2015. In: Gil, E., Gil, E., Gil, J., Gil, M. (eds) The Mathematics of the Uncertain. Studies in Systems, Decision and Control, vol 142. Springer, Cham. https://doi.org/10.1007/978-3-319-73848-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73848-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73847-5

  • Online ISBN: 978-3-319-73848-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics