Skip to main content

Physical Properties of Icy Materials

  • Chapter
  • First Online:
  • 1268 Accesses

Abstract

There is evidence that water-ice exists on a number of bodies in the solar system. As ice deposits may contain biomarkers that indicate the presence of life, or can be used as a consumable resource for future missions, confirming these observations with in-situ measurements is of great interest. Missions aiming to do this must consider how the presence of water-ice in regolith affects both the regolith’s properties and the performance of the instruments that interact with it. The properties of icy lunar and Martian regolith simulants in preparation for currently planned missions are examined in this chapter. These results can be used in future instrumentation testing and missions designed to explore other icy bodies in the solar system. The testing of icy lunar regolith simulants is summarised, before focusing on experiments demonstrating the change in properties of frozen NU-LHT-2M, a simulant of the highlands regolith found at the lunar poles, as water is added. Further tests showed a critical point of 5 ± 1% water mass content where the penetration resistance significantly increases. The addition of water to Martian regolith simulants was also examined, with the presence of salts resulting in the formation of cemented crusts under simulated Martian conditions. Additional tests with the ExoMars PSDDS demonstrated how increased internal cohesion caused by the water resulted in the failure of the instrument.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arvidson, R.E., Anderson, R.C., Bartlett, P., Bell III, J.F., Blaney, D., Christensen, P.R., Chu, P., Crumpler, L., Davis, K., Ehlmann, B.L., Fergason, R., Golombek, M.P., Gorevan, S., Grant, J.A., Greeley, R., Guinness, E.A., Haldermann, A.F.C., Kerkenhoff, K., Johnson, J., Landis, G., Li, R., Lindemann, R., McSween, H., Ming, D.W., Myrick, T., Richter, L., Seelos IV, F.P., Squyres, S.W., Sullivan, R.J., Wang, A., Wilson, J.: Localization and physical properties experiments conducted by spirt at Gusev Crater. J. Sci. 305, 821–824 (2004)

    Article  Google Scholar 

  • Bandfield, J.L.: High-resolution subsurface water-ice distributions on Mars. J. Nat. 447, 64–67 (2007)

    Article  Google Scholar 

  • Bishop, J.L., Murchie, S.L., Pieters, C.M., Zent, A.P.: A model for formation of dust, soil, and rock coatings on Mars: physical and chemical processes on the Martian surface. J. Geophys. Res. 107, E11 (2002)

    Article  Google Scholar 

  • Cabrol, N.A., Farmer, J.D., Grin, E.A., Richter, L., Soderblom, L., Li, R., Herkenhoff, K., Landis, G.A., Arvidson, R.E.: Aqueous processes at Gusev crater inferred from physical properties of rocks and soils along the Spirit traverse. J. Geophys. Res. 111, E02S20 (2006)

    Article  Google Scholar 

  • Čadek, O., Tobie, G., Van Hoolst, T., Massé, M., Choblet, G., Lefèvre, A., Mitri, G., Baland, R., Běhounková, M., Bourgeouis, O., Trinh, A.: Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape and libration data. J. Geophys. Res. Lett. 43, 5653–5660 (2016)

    Article  Google Scholar 

  • Carpenter, J.D., Barber, S., Cerroni, P., Fisackerly, R., Fumagalli, A., Houdou, B., Howe, C., Magnani, P.G., Morse, A., Monchieri, E., Reiss, P., Richter, L., Rizzi, F., Sheridan, S., Waugh, L, Wright, I.P.: Accessing and assessing lunar resources with PROSPECT. In: Annual Meeting of the Lunar Exploration Analysis Group, Maryland (2014)

    Google Scholar 

  • Chevrier, V., Mathé, P.E.: Minearology and evolution of the surface of Mars: a review. J. Planetary Space Sci. 55, 289–314 (2007)

    Article  Google Scholar 

  • Clark, R.N.: Detection of Adsorbed water and hydroxyl on the Moon. J. Sci. 326, 562–564 (2009)

    Article  Google Scholar 

  • Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R., Goldstein, D., Summy, D., Bart, G., Asphaung, E., Korycansky, D., Landis, D., Sollitt, L.: Detection of water in the LCROSS ejecta plume. J. Sci. 330, 463–467 (2010)

    Article  Google Scholar 

  • Cooper, C.D., Mustard, J.F.: Spectroscopy of loose and cemented sulfate-bearing soils: implications for duricrust on Mars. J. Icarus 158, 42–55 (2001)

    Article  Google Scholar 

  • Durrant, S., Baglioni, P.: ExoMars rover module drill & SPDS sample materials for verification. In: EXM-RM-TNO-ESA-00003, ESA ESTEC, Noordwijk (2013)

    Google Scholar 

  • Fisackerly, R., Carpenter, J., Houdou, B., Visentin, G., Savoia, M., Rizzi, F., Magnani, P., Barber, S., Reiss, P., Richter, L.: Accessing, drilling and operating at the Lunar South Pole: Status of European plans and activities. In: Earth and Space Science 2014: Engineering for Extreme Environments, St. Louis (2014)

    Google Scholar 

  • Fisher, E.A., Lucey, P.G., Lemelin, M., Greenhagen, B.T., Siegler, M.A., Mazarico, E., Aharonson, O., Williams, J.P., Hayne, P.O., Neumann, G.A., Paige, D.A., Smith, D.E., Zuber, M.T.: Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment. J. Icarus 292, 74–85 (2017)

    Article  Google Scholar 

  • Gertsch, L., Gustafon, R., Gertsch, R.: Effect of water ice content on excavatability of lunar regolith. In: El-Genk, M. (ed.) Space Technology and Applications International Forum 813, Melville, pp. 1093–1100 (2006)

    Google Scholar 

  • Gowen, R.A., Smith, A., Fortes, A.D., Barber, S., Brown, P., Church, P., Collinson, G., Coates, A.J., Collins, G., Crawford, I.A., Dehant, V., Chela-Flores, J., Griffiths, A.D., Grindrod, P.M., Gurvits, L.I., Hagermann, A., Hussmann, H., Jaumann, R., Jones, A.P., Joy, K.H., Karatekin, O., Miljkovic, K., Palomba, E., Pike, W.T., Prieto-Ballesteros, O., Raulin, F., Sephton, M.A., Sheridan, S., Sims, M., Storrie-Lombardi, M.C., Ambrosi, R., Fielding, J., Fraser, G., Gao, Y., Jones, G.H., Kargl, G., Karl, W.J., Macagnano, A., Mukherjee, A., Muller, J.P., Phipps, A., Pullan, D., Richter, L., Sohl, F., Snape, J., Sykes, J., Wells, N.: Penetrators for in situ subsurface investigations of Europa. J. Adv. Space Res. 48, 725–742 (2011)

    Article  Google Scholar 

  • Hansen, C.J., Shemansky, D.E., Esposito, L.W., Stewart, A.I.F., Lewis, B.R., Colwell, J.E., Hendrix, A.R., West, R.A., Waite Jr., J.H., Teolis, B., Magee, B.A.: The composition and structure of the Enceladus plume. J. Geophys. Res. Lett. 38, L11202 (2011)

    Article  Google Scholar 

  • Heldmann, J.L., Schurmeier, L., McKay, C., Davila, A., Stoker, C., Marinova, M., Wilhelm, M.B.: Midlatitude ice-rich ground on Mars as a target in the search for evidence of life and for in situ resource utilization on human missions. J Astrobiology 14, 102–118 (2014)

    Article  Google Scholar 

  • Herkenhoff, K.E., Squyres, S.W., Arvidson, R., Bass, D.S., Bell II, J.F., Bertelsen, P., Ehlmann, B.L., Farrand, W., Gaddis, L., Greeley, R., Grotzinger, J., Hayes, A.G., Hviid, S.F., Johnson, J.R., Jolliff, B., Kinch, K.M., Knoll, A.H., Madsen, M.B., Maki, J.N., McLennan, S.M., McSween, H.Y., Ming, D.W., Rice Jr., J.W., Richter, L., Sims, M., Smith, P.H., Soderblom, L.A., Spanovich, N., Sullivan, R., Thompson, S., Wdowiak, T., Weitz, C., Whelley, P.: Evidence from opportunity’s microscopic imager for water on Meridiani Planum. J. Sci. 306, 1727–1730 (2004)

    Article  Google Scholar 

  • Hudson, T.L., Aharonson, O.: Diffusion barriers at Mars surface conditions: salt crusts, particle size mixtures, and dust. J J. Geophys. Res. 113, E09008 (2008)

    Google Scholar 

  • Kalousová, K., Souček, O., Tobie, G., Choblet, G., Čadek, O.: Water generation and transport below Europa’s strike-slip faults. J. Geophys. Res. 121, 2444–2462 (2016)

    Article  Google Scholar 

  • Kömle, N., Pitcher, C., Gao, Y., Richter, L.: Study of the formation of duricrusts on the Martian surface and their effect on sampling equipment. J. Icarus 281, 220–227 (2017)

    Article  Google Scholar 

  • Landis, G.A., Blaney, D., Cabrol, N., Clark, B.C., Farmer, J., Grotzinger, J., Greeley, R., McLennan, S.M., Richter, L., Yen, A.: Transient liquid water as a mechanism for induration of soil crusts on Mars. In: Lunar and Planetary Science XXXV, Houston (2004)

    Google Scholar 

  • Mantovani, J., Swanger, A., Townsend III, I., Sibille, L., Galloway, G.: Characterizing the physical and thermal properties of planetary regolith at low temperatures. In: Gertsch, L., Malla, R. (eds.) Earth and Space 2014, Missouri, pp. 43–51 (2014)

    Google Scholar 

  • McKay, C.P., Anbar, A.D., Porco, C., Tsou, P.: Follow the plume: the habitability of Enceladus. J. Astrobiol. 14, 352–355 (2014)

    Article  Google Scholar 

  • McKay, D.S., Carter, J.L., Boles, W.W., Allen, C.C., Allton, J.H.: JSC-1: a new lunar soil simulant. In: Galloway, R.G., Lokaj, S. (eds.) Engineering, Construction and Operations in Space IV, pp. 857–866. American Society of Civil Engineers, New York (1994)

    Google Scholar 

  • Metzger, P., Galloway, G., Mantovani, J., Zacny, K., Craft, J. Low force icy regolith penetration technology. In: NASA Technical Memorandum 2011-216302, NASA Center for Aerospace Information, Hanover (2011)

    Google Scholar 

  • Mitrofanov, I., Sanin, A., Boynton, W., Chine, G., Garvin, J., Golovin, D., Evans, L., Harshman, K., Kozyrev, A., Litvak, M., Malakhov, A., Mazarico, E., McClanahan, T., Milikh, G., Mokrousov, M., Nandikotkur, G., Neumann, G., Nuzhdin, I., Sagdeev, R., Shevchenko, V., Shvetsov, V., Smith, D., Starr, R., Tretyakov, V., Trombka, J., Usikov, D., Varenikov, A., Vostrukhin, A., Zuber, M.: Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND. J. Sci. 330, 483–486 (2010)

    Article  Google Scholar 

  • Moore, H.J., Jakosky, B.M.: Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials. J. Icarus 81, 164–184 (1989)

    Article  Google Scholar 

  • Mutch, T.A., Arvidson, R.E., Binder, A.B., Guinness, E.A., Morris, E.C.: The geology of the Viking Lander 2 site. J. Geophys. Res. 82, 4452–4467 (1977)

    Article  Google Scholar 

  • Neal, C.R., Lawrence, S.J.: A Multi-decadal sample return campaign will advance lunar and solar system science and exploration. In: European Lunar Symposium, Münster (2017)

    Google Scholar 

  • Piqueux, S., Christensen, P.: A model of thermal conductivity for planetary soils: 2. Theory for cemented soils. J. Geophys. Res. 114, E09006 (2009)

    Google Scholar 

  • Pitcher, C.: Advancing the dual reciprocating drill design for efficient planetary subsurface exploration. Ph.D. thesis, University of Surrey (2017)

    Google Scholar 

  • Pitcher, C., Gao, Y.: Analysis of drill head designs for dual-reciprocating drilling technique in planetary regoliths. J. Adv. Space Res. 56, 1765–1776 (2015)

    Article  Google Scholar 

  • Pitcher, C., Kömle, N., Leibniz, O., Morales-Calderon, O., Gao, Y., Richter, L.: Investigation of the properties of icy lunar polar regolith simulants. J. Adv. Space Res. 57, 1197–1208 (2016)

    Article  Google Scholar 

  • Redlich, D., Paul, R., Ott, S., Richter, L., Mühlbauer, Q., Thiel, M., Tattusch, T., Weisz, H., Musso, F., Durrant, S.: Development and testing of a “Backlash-Free” gas-tight high-precision sample dosing mechanism for the ExoMars 2018 Rover. In: 43rd Aerospace Mechanisms Symposium, NASA Ames Research Center, pp. 51–66 (2016)

    Google Scholar 

  • Richter, L., Carianni, P., Durrant, S., Hofmann, P., Mühlbauer, Q., Musso, F., Paul, R., Redlich, D.: Progress report on development of the ExoMars 2018 sample processing and distribution subsystem (SPDS) and related OHB sample handling studies. In: 13th Symposium on Advanced Space Technologies in TRobotics and Automation (ASTRA), Noordwijk (2015)

    Google Scholar 

  • Roth, L., Saur, J., Retherford, K.D., Strobel, D.F., Feldman, P.D., McGrath, M.A., Nimmo, F.: Transient water vapor at Europa’s South Pole. J Science 343, 171–174 (2014)

    Article  Google Scholar 

  • Sanders, G.B., Larson, W.E.: Integration of In-Situ resource utilization into Lunar/Mars exploration through field analogs. J. Adv. Space Res. 47, 20–29 (2011)

    Article  Google Scholar 

  • Schrader, C.M., Rickman, D.L., McLemore, C.A., Fikes, J.C., Stoeser, D.B., Wentworth, S.J., McKay, D.S.: Lunar regolith characterization for simulant design and evaluation using figure of merit algorithms. In: 47th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Reston (2009)

    Google Scholar 

  • Schrader, C.M., Rickman, D.L., McLemore, C.A., Fikes, J.C.: Lunar regolith simulant user’s guide. In: NASA Technical Memorandum 2010-216446, NASA Center for Aerospace Information, Hanover (2010)

    Google Scholar 

  • Schultz-Makuch, D., Head, J.N., Houtkooper, J., Knoblauch, M., Furfaro, R., Fink, W., Fairén, A.G., Vail, H., Sears, S.K., Daly, M., Deamer, D., Schmidt, H., Hawkins, A., Sun, H.J., Lim, D.S.S., Dohm, J., Irwin, L.N., Davila, A.F., Mendez, A., Andersen, D.: The biological oxidant and life detection (BOLD) mission: a proposal for a mission to Mars. J. Planetary Space Sci. 67, 57–69 (2012)

    Article  Google Scholar 

  • Seiferlin, K., Ehrenfreund, P., Garry, J., Gunderson, K., Hütter, E., Kargl, G., Maturilli, A., Merrison, J.P.: Simulating Martian regolith in the laboratory. J. Planetary Space Sci. 56, 2009–2025 (2008)

    Article  Google Scholar 

  • Sharp, R.P., Malin, M.C.: Surface geology from viking landers on Mars: a second look. J. Geol. Soc. Am. Bull. 95, 1398–1412 (1984)

    Article  Google Scholar 

  • Smith, P.H., Tamppari, L.K., Arvidson, R.E., Bass, D., Blaney, D., Boynton, W.V., Carswell, A., Catling, D.C., Clark, B.C., Duck, T., DeJong, E., Fisher, D., Goetz, W., Gunnlaugsson, H.P., Hecht, M.H., Hipkin, V., Hoffman, J., Hviid, S.F., Keller, H.U., Kounaves, S.P., Lange, C.F., Lemmon, M.T., Madsen, M.B., Markiewicz, W.J., Marshall, J., McKay, C.P., Mellon, M.T., Ming, D.W., Morris, R.V., Pike, W.T., Renno, N., Staufer, U., Stoker, C., Taylor, P., Whiteway, J.A., Zent, A.P. H2O at the phoenix landing site. J. Sci 325, 58–61 (2009)

    Google Scholar 

  • Sparks, W.B., Hand, K.P., McGrath, M.A., Bergeron, E., Cracraft, M., Deustua, S.E.: Probing for evidence of plumes on Europa with HST/STIS. Astrophys. J. 829, 121 (2016)

    Article  Google Scholar 

  • Stoeser, D., Wilson, S., Rickman, D.: Design and specifications for the highland regolith prototype simulants NU-LHT-1M and -2M. In: NASA Technical Memorandum 2010-216438 NASA Centre for Aerospace Information, Hanover (2010)

    Google Scholar 

  • Taylor, L.: Status of lunar regolith simulants and demand for Apollo samples. In: Lunar Exploration Analysis Group (LEAG) Analysis Reports. NASA. http://www.lpi.usra.edu/leag/reports/SIM_SATReport2010.pdf (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Pitcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitcher, C., Gao, Y. (2018). Physical Properties of Icy Materials. In: Badescu, V., Zacny, K. (eds) Outer Solar System. Springer, Cham. https://doi.org/10.1007/978-3-319-73845-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73845-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73844-4

  • Online ISBN: 978-3-319-73845-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics