Advertisement

A Sheet Probability Index from Diffusion Tensor Imaging

  • Michael Ankele
  • Thomas Schultz
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

A sheet probability index (SPI) has recently been derived from high angular resolution diffusion MRI to quantify the hypothesis that white matter tracts are organized in parallel sheets of interwoven paths. In this work, we derive the DTI-SPI, a variant of the SPI that can be computed from the widely available, simple, and fast diffusion tensor imaging, by considering the normal component of the Lie bracket of the major and medium eigenvector fields. We observe that, despite the fact that DTI does not allow us to infer crossing fiber orientations, the DTI-SPI has a meaningful interpretation in terms of sheet structure if the largest pair of eigenvectors spans the same plane as the two dominant fibers. We report empirical results that support this assumption. We also show a direct comparison to the previously proposed SPI on data from the human connectome project, and demonstrate that major features in maps of our DTI-SPI remain recognizable in standard clinical DTI data.

Notes

Acknowledgements

This work was supported by the DFG under grant SCHU 3040/1-1. Data were provided by Tobias Schmidt-Wilcke (St. Mauritius Hospital, Meerbusch, Germany) and by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

References

  1. 1.
    Ankele, M., Lim, L.H., Groeschel, S., Schultz, T.: Fast and accurate multi-tissue deconvolution using SHORE and H-psd tensors. In: Proceedings of the Medical Image Analysis and Computer-Aided Intervention (MICCAI) Part III. Lecture Notes in Computer Science, vol. 9902, pp. 502–510 (2016)Google Scholar
  2. 2.
    Ankele, M., Lim, L.H., Groeschel, S., Schultz, T.: Versatile, robust, and efficient tractography with constrained higher-order tensor fODFs. Int. J. Comput. Assist. Radiol. Surg. (2017). https://doi.org/10.1007/s11548-017-1593-6
  3. 3.
    Catani, M., Bodi, I., Dell’Acqua, F.: Comment on “the geometric structure of the brain fiber pathways”. Science 337(6102), 1605–1605 (2012)CrossRefGoogle Scholar
  4. 4.
    Chung, S., Lu, Y., Henry, R.G.: Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage 33(2), 531–541 (2006)CrossRefGoogle Scholar
  5. 5.
    Galinsky, V.L., Frank, L.R.: The lamellar structure of the brain fiber pathways. Neural Comput. 28(11), 2533–2556 (2016)CrossRefGoogle Scholar
  6. 6.
    Jeurissen, B., Leemans, A., Jones, D.K., Tournier, J.D., Sijbers, J.: Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum. Brain Mapp. 32, 461–479 (2011)CrossRefGoogle Scholar
  7. 7.
    Jeurissen, B., Leemans, A., Tournier, J.D., Jones, D.K., Sijbers, J.: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum. Brain Mapp. 34(11), 2747–66 (2013)CrossRefGoogle Scholar
  8. 8.
    Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103, 411–426 (2014)CrossRefGoogle Scholar
  9. 9.
    Pajevic, S., Aldroubi, A., Basser, P.J.: A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. J. Magn. Reson. 154, 85–100 (2002)CrossRefGoogle Scholar
  10. 10.
    Peled, S., Friman, O., Jolesz, F., Westin, C.F.: Geometrically constrained two-tensor model for crossing tracts in DWI. Magn. Reson. Imaging 24(9), 1263–1270 (2006)CrossRefGoogle Scholar
  11. 11.
    Qazi, A.A., Radmanesh, A., O’Donnell, L., Kindlmann, G., Peled, S., Westin, C.F., Golby, A.J.: Resolving crossings in the corticospinal tract by two-tensor streamline tractography: method and clinical assessment using fMRI. NeuroImage 47(Suppl. 2), T98–T106 (2009)CrossRefGoogle Scholar
  12. 12.
    Schultz, T., Seidel, H.P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Graph. 14(6), 1635–1642 (2008)CrossRefGoogle Scholar
  13. 13.
    Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C., Essen, D.C.V., Ugurbil, K., Behrens, T.E.: Advances in diffusion MRI acquisition and processing in the human connectome project. NeuroImage 80, 125–143 (2013)CrossRefGoogle Scholar
  14. 14.
    Spivak, M.: A Comprehensive Introduction to Differential Geometry, 3rd edn., vol. 1. Publish or Perish, Inc., Houston (1999)zbMATHGoogle Scholar
  15. 15.
    Tax, C.M., Dela Haije, T., Fuster, A., Westin, C.F., Viergever, M.A., Florack, L., Leemans, A.: Sheet probability index (SPI): characterizing the geometrical organization of the white matter with diffusion MRI. NeuroImage 142, 260–279 (2016)CrossRefGoogle Scholar
  16. 16.
    Tax, C.M.W., Westin, C.F., Dela Haije, T., Fuster, A., Viergever, M.A., Calabrese, E., Florack, L., Leemans, A.: Quantifying the brain’s sheet structure with normalized convolution. Med. Image Anal. 39, 162–177 (2017)CrossRefGoogle Scholar
  17. 17.
    Wedeen, V.J., Rosene, D.L., Wang, R., Dai, G., Mortazavi, F., Hagmann, P., Kaas, J.H., Tseng, W.Y.I.: Response to comment on “the geometric structure of the brain fiber pathways”. Science 337(6102), 1605–1605 (2012)CrossRefGoogle Scholar
  18. 18.
    Wedeen, V.J., Rosene, D.L., Wang, R., Dai, G., Mortazavi, F., Hagmann, P., Kaas, J.H., Tseng, W.Y.I.: The geometric structure of the brain fiber pathways. Science 335(6076), 1628–1634 (2012)CrossRefGoogle Scholar
  19. 19.
    Westin, C.F., Maier, S., Mamata, H., Nabavi, A., Jolesz, F., Kikinis, R.: Processing and visualization for diffusion tensor MRI. Med. Image Anal. 6, 93–108 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of BonnBonnGermany

Personalised recommendations