Skip to main content

Intoxication of Breathing Gases During Diving

  • Chapter
  • First Online:
Diving Medicine

Abstract

A part of diving accidents are caused by effects of breathing gases during diving. Normal air contains approx. 78% nitrogen (N2), 21% oxygen (O2), 0.9% argon (Ar), 0.03% carbon dioxide (CO2) and 0.01% helium (He), neon (Ne), krypton (Kr), hydrogen (H), xenon (X) and ozone (O3). All gases except oxygen and carbon dioxide are inert gases. Inert gases are only slightly chemical reactive. They don’t participate in physiological processes and hence will be at the same level expired as they were inhaled. Normally carbon monoxide isn’t included in the normal air. However, with insufficient burning of fossil fuels, carbon monoxide is produced and causes problems during diving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aranake A, Mahour GA, Avidan MS. Minimum alveolar concentration: ongoing relevance and clinical utility. Anaesthesia. 2013;68:512–22.

    Article  CAS  PubMed  Google Scholar 

  2. Aubard Y, Magen I. Carbon monoxide poisoning in pregnancy. Bri J Obstet Gynocol. 2000;107:833–8.

    Article  CAS  Google Scholar 

  3. Bennett P. Inert gas narcosis and HPNS. In: Bove A, editor. Bove and Davis’ diving medicine. 4th ed. Philadelphia: WB Saunders; 2004. p. 225–40.

    Google Scholar 

  4. Bennett PB, Rostain JC. Inert gas narcosis. In: Brubakk AO, Neuman TS, editors. Bennett and Elliott’s physiology and medicine of diving. 5th ed. Toronto: Saunders; 2003. p. 300–22.

    Google Scholar 

  5. Bühlmann AA, Voelmm EB, Nussberger P. Tauchmedizin, Barotrauma, Gasembolie, Dekompensation, Dekompensationskrankheit. 5th ed. Berlin: Springer; 2002.

    Google Scholar 

  6. De Martino G, Luchetti M, De Rosa RC. Toxic effects of oxygen. In: Michael M, Marroni A, Longoni C, editors. Handbook of hyperbaric medicine. New York: Springer; 1996. p. 59–68.

    Chapter  Google Scholar 

  7. Donald KW. Oxygen poisoning in man. Brit MEC J. 1947;1:667–712. 712–717.

    Article  CAS  Google Scholar 

  8. Eger EI 2nd, Ionesco P, Laster MJ, et al. Minimum alveolar anaesthetic concentration of fluoridated alkanols in rats: relevance to theories of narcosis. Anaesth Analg. 1999;88:867–76.

    Article  CAS  Google Scholar 

  9. Hamilton K, Laliberte MF, Heslegrave R, Khan S. Visual/vestibular effects of inert gas narcosis. Ergonomics. 1993;36:891–8. https://doi.org/10.1080/00140139308967954.

    Article  PubMed  CAS  Google Scholar 

  10. Hamilton RW. Tolerating exposure to high oxygen levels: Repex and other methods. MTS J. 1989;23(4):19–25.

    Google Scholar 

  11. Hamilton RW. Tolerating oxygen exposure. SPUMS J. 1997;27(1):43–7.

    Google Scholar 

  12. Hampson NB, Dunford RG, Kramer CC, Norkool DM. Selection criteria utilized for hyperbaric oxygen treatment of carbon monoxide poisoning. J Emerg Med. 1995;13(2):227–31.

    Article  CAS  PubMed  Google Scholar 

  13. Jain KK. Chapter 6 Oxygen toxicity. In: Textbook of hyperbaric medicine. 5th ed: Springer; 2017. p. 49–60.

    Google Scholar 

  14. Jain KK. High-pressure neurological syndrome (HPNS). Acta Neurol Scand. 1994;90:45–50.

    Article  CAS  PubMed  Google Scholar 

  15. Karsowski MD, Harrison NL. General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999;55(10):1278–303.

    Article  Google Scholar 

  16. Kneller W, Hobbs M. Inert gas narcosis and the encoding and retrieval of long-term memory. Aviat Space Environ Med. 2013;84:1235–9.

    Article  PubMed  Google Scholar 

  17. Kneller W, Hobbs M. The levels of processing effect under nitrogen narcosis. Undersea Hyperb Med. 2013;40:239–45.

    PubMed  Google Scholar 

  18. Koblin DD. Inhaled anesthetics: mechanisms of action. In: Miller R, editor. Anesthesia. 4th ed. New York: Churchill-Livingstone; 1994. p. 67–99.

    Google Scholar 

  19. Koblin DD, Fang Z, Eger E, Laster MJ, Gong D, Ionescu P, Halsey MJD, Trudell JR. Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: helium and neon as nonimmobilizers (nonanesthetics). Anesth Analg. August;87(2):419–24.

    Google Scholar 

  20. Lavoute C, Weiss M, Rostain JC. Alterations in nigral NMDA and GABAA receptor control of the striatal dopamine level after repetitive exposures to nitrogen narcosis. Exp Neurol. 2008;212:63–70. https://doi.org/10.1016/j.expneurol.2008.03.001.

    Article  PubMed  CAS  Google Scholar 

  21. Lavoute C, Weiss M, Sainty JM, Risso JJ, Rostain JC. Post effect of repetitive exposures to pressure nitrogen-induced narcosis on the dopaminergic activity at atmospheric pressure. Undersea Hyperb Med. 2008;35:21–5.

    PubMed  CAS  Google Scholar 

  22. Moon R, Bryant S. Diving and the lung. SPUMS J. 1997;27(4):218–27.

    Google Scholar 

  23. National Oceanic and Atmospheric Administration. Diving for science and technology. In: NOAA diving manual. Washington, DC; 1990.

    Google Scholar 

  24. Overton CE. Studien über die Narkose zugleich ein Beitrag zur allgemeinen Pharmakologie. Jena: Gustav Fischer; 1901.

    Google Scholar 

  25. Rostain JC, Balon N. Recent neurochemical basis of inert gas narcosis and pressure effects. UHM 2006;33, No. 3-Neurochemical bases of narcosis and HPNS.

    Google Scholar 

  26. Rostain JC, Gardette-Chauffour MC, Naquet R. EEG and sleep disturbances during dives at 450 msw in helium-nitrogen-oxygen mixture. J Appl Physiol. 1997;83:575–82.

    Article  CAS  PubMed  Google Scholar 

  27. Rostain JC, Lavoute C, Risso JJ, Vallee N, Weiss M. A review of recent neurochemical data on inert gas narcosis. Undersea Hyperb Med. 2011;38:49–59.

    PubMed  CAS  Google Scholar 

  28. Sanders RD, Franks NP, Maze M. Xenon: no stranger to anaesthesia. BJA: Br J Anaesth. 2003;91(5):709–17. https://doi.org/10.1093/bja/aeg232

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt RF, Lang F, Heckmann M, Physologie des Menschens, 31. Auflage, Springer; 2010

    Google Scholar 

  30. Thom SR, Elbuken ME. Oxygen-dependent antagonism of lipid peroxidation. Free Radic Biol Med. 1991;10:413–26.

    Article  CAS  PubMed  Google Scholar 

  31. Tonner PH, Lutz H. Pharmakotherapie in der Anaesthesie und Intensivemedizin. Berlin: Springer; 2011.

    Book  Google Scholar 

  32. US Navy Diving Manual. www.uhms/images/DCS-and-AGE-Journal-Watch/recompression_therapy_usn_di.pdf. Accessed 04.10.2015.

  33. Vaernes R, Bennett PB, Hammerborg D, Ellertsen B, Peterson RE, Toonjum S. Central nervous system reactions during heliox and trimix dives to 31 ATA. Undersea Biomed Res. 1982;9:1–14.

    PubMed  CAS  Google Scholar 

  34. Wada S, Yokota A, Matsuoka S, Kadoya C, Mohri M. Effects of hyperbaric environment on human auditory middle latency response (MLR) and short latency somatosensory evoked potential (SSEP). J UOEH. 1989;11:441–7.

    Article  CAS  PubMed  Google Scholar 

  35. Weir JC. The molecular mechanisms of general anaesthesia: dissecting the GABAA receptor. Contin Educ Anaesth Crit Care Pain. 2006;6(2):49–53.

    Article  Google Scholar 

  36. Wood LD, Bryant AC. Exercise ventilators mechanics at increased ambient pressure. J Appl Physiol. 1978;44:231–7.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang M, Gao Y, Fang H. A new understanding of inert gas narcosis. Chin Phys B. 2016;25(1):013602.

    Article  CAS  Google Scholar 

  38. Zhou C, Liu J, Chen XD. General anaesthesia mediated by effects on ion channels. World J Crit Care Med. 2012;1(3):80–93.

    Article  PubMed  PubMed Central  Google Scholar 

Suggested Reading

  • Behnke AR, Thompson RM, Motley EP. The psychologic effects from breathing air at 4 atmospheres pressure. Am J Physiol. 1935;112:554–8.

    Google Scholar 

  • Canlas CG, Cui T, Li L, Xu Y, Tang P. Anesthetic modulation of protein dynamics: insights from a NMR study. J Phys Chem B. 2008;112(45):14312–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantor RS. The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry. 1997;36(9):2339–44.

    Article  CAS  PubMed  Google Scholar 

  • Cantor RS. Breaking the Meyer-Overton rule: predicted effects of varying stiffness and interfacial activity on the intrinsic potency of anesthetics. Biophys J. 2001;80(5):2284–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elayan IM, Axley MJ, Prasad PV, Ahlers ST, Auker CR. Effect of hyperbaric oxygen treatment on nitirc oxide and oxygen free radicals in rat brain. J Neurophysiol. 2000;83(4):2022–9.

    Article  CAS  PubMed  Google Scholar 

  • Fang XL, Mai J, Choi ET, Wang H, Yang X. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory disease and cancers. J Hematol Oncol. 2013;6:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmery S, Sykes O. Neurological oxygen toxicity. Emerg Med J. 2012;29:851–2. https://doi.org/10.1136/emermed-2011-200538.

    Article  PubMed  Google Scholar 

  • Fothergill DM, Hedges D, Morrison JB. Effects of CO2 and N2 partial pressures on cognitive and psychomotor performance. Undersea Biomed Res. 1991;18:1–19.

    PubMed  CAS  Google Scholar 

  • Fowler B, Ackles KN, Porlier G. Effects of inert gas narcosis on behavior—a critical review. Undersea Biomed Res. 1985;12:369–402.

    PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984;310(16):599–601.

    Article  CAS  PubMed  Google Scholar 

  • Franks NP, Lieb WR. Molecular and cellular mechanisms of general anesthesia. Nature. 1994;367(17):607–14. Franks NP, Lieb WR .Where do general anaesthetics act? Nature. 1978;274(5669):339–42.

    Google Scholar 

  • Franks NP, Lieb WR. Mapping of general anesthetic target sites provides a molecular basis for cutoff effects. Nature. 1985;316(6026):349–51.

    Article  CAS  PubMed  Google Scholar 

  • Franks NP, Lieb WR. Molecular and cellular mechanisms of general anesthesia. Nature. 1994;367(17):607–14.

    Article  CAS  PubMed  Google Scholar 

  • Franks NP, Lieb WR. Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science. 1991;254(5030):427–30.

    Article  CAS  PubMed  Google Scholar 

  • Geers C, Gros G. Carbon dioxide transport and carbonic anhydrases in blood and muscle. Physiol Rev. 2000;80(2):681–715.

    Article  CAS  PubMed  Google Scholar 

  • Gelfand R, Lambertsen CJ, Peterson RE. Human respiratory control at high ambient pressures and inspired gas densities. J Appl Physiol. 1980;48:528–39.

    Article  CAS  PubMed  Google Scholar 

  • Grover CA, Grover DH. Albert Behnke: nitrogen narcosis. J Emerg Med. 2014;46:225–7.

    Article  PubMed  Google Scholar 

  • Hamilton K, Laliberte MF, Fowler B. Dissociation of the behavioral and subjective components of nitrogen narcosis and diver adaptation. Undersea Hyperb Med. 1995;22:41–9.

    PubMed  CAS  Google Scholar 

  • Harless E, von Bibra E. Die Ergebnisse der Versuche über die Wirkung des Schwefeläthers. Erlangen: Verlag von Carl Heyder; 1847.

    Google Scholar 

  • Hobbs M, Higham PA, Kneller W. Memory and metacognition in dangerous situations: investigating cognitive impairment from gas narcosis in undersea divers. Hum Factors. 2014;56:696–709.

    Article  PubMed  Google Scholar 

  • Hobbs M, Kneller W. Effect of nitrogen narcosis on free recall and recognition memory in open water. Undersea Hyperb Med. 2009;36:73–81.

    PubMed  CAS  Google Scholar 

  • Hobbs M. Subjective and behavioural responses to nitrogen narcosis and alcohol. Undersea Hyperb Med. 2008;35:175–84.

    PubMed  CAS  Google Scholar 

  • Hugh C, Jr H. Molecular targets of general anaesthetics in the nervous system, Chapter 2. In: Supressing the mind, contemporary clinical neuroscience: Humana Press; 2010.

    Google Scholar 

  • Janoff AS, Miller KW. A critical assessment of the lipid theories of general anaesthetic action. Biol Membr. 1982;4(1):417–76.

    CAS  Google Scholar 

  • Janoff AS, Pringle MJ, Miller KW. Correlation of general anesthetic potency with solubility in membranes. Biochim Biophys Acta. 1981;649(1):125–8.

    Article  CAS  PubMed  Google Scholar 

  • Kandel L, Chortkoff BS, Sonner J, Laster MJ, Eger EI. Nonanesthetics can suppress learning. Anesth Analg. 1996;82(2):321–6.

    PubMed  CAS  Google Scholar 

  • Kiessling RJ, Maag CH. Performance impairment as a function of nitrogen narcosis. Rep US Navy Exp Diving Unit. 1960:1–19.

    Google Scholar 

  • Koblin DD, Chortkoff BS, Laster MJ, Eger EI II, Halsey MJ, Ionescu P. Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth Analg. 1994;79(6):1043–8.

    Article  CAS  PubMed  Google Scholar 

  • LaBella FS, Stein D, Queen G. Occupation of the cytochrome P450 substrate pocket by diverse compounds at general anesthesia concentrations. Eur J Pharmacol. 1998;358(2):177–85.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JH, Loomis WF, Tobias CA, Turpin FH. Preliminary observation on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J Physiol. 1945;105:197–204.

    Article  Google Scholar 

  • Lerner RA. A hypothesis about the endogenous analogue of general anesthesia. Proc Natl Acad Sci U S A. 1997;94(25):13375–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Laster MJ, Taheri S, Eger EI, Koblin DD, Halsey MJ. Is there a cutoff in anesthetic potency for the normal alkanes? Anesth Analg. 1993;77(1):12–8.

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Loll PJ, Eckenhoff RG. Structural basis for high-affinity volatile anesthetic binding in a natural 4-helix bundle protein. FASEB J. 2005;19(6):567–76.

    Article  CAS  PubMed  Google Scholar 

  • Lofdahl P, Andersson D, Bennett M. Nitrogen narcosis and emotional processing during compressed air breathing. Aviat Space Environ Med. 2013;84:17–21.

    Article  PubMed  Google Scholar 

  • Lugli AK, Yost CS, Kindler CH. Anaesthetic mechanisms: update on the challenge of unravelling the mystery of anaesthesia. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778226/#!po=43.7500. Accessed 23.7.2017.

  • Lüllmann H, Mohr K, Ziegler A. Taschenatlas der Pharmakologie, 6. Auflage, Thieme Stuttgart; 2008.

    Google Scholar 

  • Ma D, Brandon NR, Cui T, Bondarenko V, Canlas C, Johansson JS, Tang P, Xu Y. Four-α-helix bundle with designed anesthetic binding pockets. Part I: structural and dynamical analyses. Biophys J. 2008;94(11):4454–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieu D, Nolf M, Durocher A, et al. Acute carbon monoxide poisoning. Risk of late sequelae and treatment by hyperbaric oxygen. J Toxicol Clin Toxicol. 1985.

    Google Scholar 

  • Mekjavic IB, Savic SA, Eiken O. Nitrogen narcosis attenuates shivering thermogenesis. J Appl Physiol. 1995;78:2241–4.

    Article  CAS  PubMed  Google Scholar 

  • Meyer HH. Welche eigenschaft der anasthetica bedingt ihre narkotische Wirkung? Arch Exp Pathol Pharmakol. 1899;42(2–4):109–18.

    Article  Google Scholar 

  • Meyer HH. Zur Theorie der Alkoholnarkose. Arch Exp Pathol Pharmacol. 1899;42(2–4):109–18.

    Article  Google Scholar 

  • Meyer KH. Contributions to the theory of narcosis. Trans Faraday Soc. 1937;33:1062–8.

    Article  CAS  Google Scholar 

  • Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, Harris RA, Harrison NL. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature. 1997;389(6649):385–9.

    Google Scholar 

  • Miller JW, Bachrach AJ, Walsh JM. Assessment of vertical excursions and open-sea psychological performance at depths to 250 fsw. Undersea Biomed Res. 1976;3(4):339–49.

    PubMed  CAS  Google Scholar 

  • Miller KW. The nature of the site of general anesthesia. Int Rev Neurobiol. 1985;27(1):1–61.

    PubMed  CAS  Google Scholar 

  • Miller KW, Paton WD, Smith RA, Smith EB. The pressure reversal of general anesthesia and the critical volume hypothesis. Mol Pharmacol. 1973;9(2):131–43.

    PubMed  CAS  Google Scholar 

  • Mitchell SJ, Cronjé FJ, Meintjes WA, Britz HC. Fatal respiratory failure during a “technical” rebreather dive at extreme pressure. Aviat Space Environ Med. 2007;78(2):81–6.

    PubMed  Google Scholar 

  • Mohr JT, Gribble GW, Lin SS, Eckenhoff RG, Cantor RS. Anesthetic potency of two novel synthetic polyhydric alkanols longer than the n-alkanol cutoff: evidence for a bilayer-mediated mechanism of anesthesia? J Med Chem. 2005;48(12):4172–6.

    Article  CAS  PubMed  Google Scholar 

  • Morrison JB, Florio JT, Butt WS. Effects of CO2 insensitivity and respiratory pattern on respiration in divers. Undersea Biomed Res. 1981;8:209–17.

    PubMed  CAS  Google Scholar 

  • Mullins LI. Some physical mechanisms in narcosis. Chem Rev. 1954;54(2):289–323.

    Article  CAS  Google Scholar 

  • Pringle MJ, Brown KB, Miller KW. Can the lipid theories of anesthesia account for the cutoff in anesthetic potency in homologous series of alcohols? Mol Pharmacol. 1981;19(1):49–55.

    PubMed  CAS  Google Scholar 

  • Raub JA, Benignus VA. Carbon monoxide and the nervous system. Neurosci Biobehav Rev. 2002;26(8):925–40.

    Article  CAS  PubMed  Google Scholar 

  • Rogers WH, Moeller G. Effect of brief, repeated hyperbaric exposures on susceptibility to nitrogen narcosis. Undersea Biomed Res. 1989;16:227–32.

    PubMed  CAS  Google Scholar 

  • Slater SJ, Cox KJ, Lombardi JV, Ho C, Kelly MB, Rubin E, Stubbs CD. Inhibition of protein kinase C by alcohols and anaesthetics. Nature. 1993;364(6432):82–4.

    Article  CAS  PubMed  Google Scholar 

  • Taheri S, Laster MJ, Liu J, Eger EI II, Halsey MJ, Koblin DD. Anesthesia by n-alkanes not consistent with the Meyer-Overton hypothesis: Determinations of solubilities of alkanes in saline and various lipids. Anesth Analg. 1993;77(1):7–11. Tang P, Xu Y. Large-scale molecular dynamics simulations of general anesthetic effects on the ion channel in the fully hydrated membrane: the implication of molecular mechanisms of general anesthesia. Proc. Natl. Acad. Sci. U.S.A. 2002;99(25):16035–40.

    Google Scholar 

  • Talpalar AE. High pressure neurological syndrome. Rev Neurol. 2007;45(10):631–6.

    PubMed  CAS  Google Scholar 

  • Trudell JR. A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology. 1977;46(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  • Trudell JR, Koblin DD, Eger EI 2nd. A molecular description of how noble gases and nitrogen bind to a model site of anesthetic action. Anesth Analg. 1998;87:411–8.

    PubMed  CAS  Google Scholar 

  • Unsworth IP. Inert gas narcosis—an introduction. Postgrad Med J. 1966;42:378–85.

    Article  PubMed Central  Google Scholar 

  • Vaes WHJ, Ramos EU, Hamwijk C, van Holsteijn I, Blaauboer BJ, Seinen W, Verhaar HJM, Hermens JLM. Solid phase microextraction as a tool to determine membrane/water partition coefficients and bioavailable concentrations in in vitro systems. Chem Res Toxicol. 1997;10(10):1067–72.

    Article  CAS  PubMed  Google Scholar 

  • van Wijk CH, Meintjes WA. Complex tactile performance in low visibility: the effect of nitrogen narcosis. Diving Hyperb Med. 2014;44:65–9.

    PubMed  Google Scholar 

  • Varene P, Vieillefond H, Lemaire C, Saumon G. Expiratory flow volume curves and ventilation limitation of muscular exercise at depth. Aerosp Med. 1974;45:161–6.

    PubMed  CAS  Google Scholar 

  • Waters RM. Toxic effects of carbon dioxide. New Orleans Med Surg J. 1937;90:219–24.

    Google Scholar 

  • Yogev D, Mekjavi IB. Behavioral temperature regulation in humans during mild narcosis induced by inhalation of 30% nitrous oxide. Undersea Hyperb Med. 2009;36:361–73.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rusoke-Dierich, O. (2018). Intoxication of Breathing Gases During Diving. In: Diving Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-73836-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73836-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73835-2

  • Online ISBN: 978-3-319-73836-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics