Skip to main content

Collapse Frequencies of Bridges

  • Chapter
  • First Online:

Part of the book series: Risk Engineering ((RISK))

Abstract

As mentioned in the Chap. 3, either the direct bridge collapse frequency numbers or the data used to determine the bridge collapse frequency within this book are taken from various publications and scientific works. Hence no new data is added, however the existing data is combined. The extended data pool allows more robust conclusions and perhaps some new conclusions in comparison to the conclusions drawn in each individual study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abels & Annes PC (2017) Bridge collapse accidents

    Google Scholar 

  • Akesson B (2008) Understanding bridge collapses. CRC Press, Taylor and Francis, London

    Google Scholar 

  • Akiyama M, Frangopol DM, Arai M, Koshimura S (2012) Probabilistic assessment of structural performance of bridges under Tsunami hazard. In: 43rd Structures Congress, Chicago. 29–31 March 2012

    Google Scholar 

  • Ang AH-S (2013) Minimizing the effects of uncertainty in life-cycle engineering. In: Strauss A, Frangopol DM, Bergmeister K (eds) Life-cycle and sustainability of civil infrastructure systems. Taylor & Francis Group, London, pp 36–41

    Google Scholar 

  • Anonymus (2004) Nachrichten, der Prüfingenieur. April 2004, Seite 7

    Google Scholar 

  • Anumba C, Egbu C, Kashyap M (2006) Avoiding structural collapses in refurbishment—a decision support system. Loughborough University, Prepared for the Health and Safety Executive, Research Report 463, Loughborough

    Google Scholar 

  • ASCE (2013) 2013 Report card for America’s infrastructure: bridges: overview, American society of civil engineers. http://www.infrastructurereportcard.org

  • BAST (2016) Zustandsnoten der Brücken. http://www.bast.de/DE/Statistik/Bruecken/Zustands-noten.pdf?__blob=publicationFile&v=2

  • BAST (2017) Brücken an Bundesfernstrassen. http://www.bast.de/DE/Statistik/Bruecken/Brue-ckenstatistik.pdf?__blob=publicationFile&v=7

  • Biezma MV, Schanack F (2007) Collapse of steel bridges. J Perform Con-structed Facil (ASCE) 21(5):398–405

    Article  Google Scholar 

  • Binder F, Strauss A (2017) Life cycle costs for maintenance strategies using Monte Carlo simuation methods. In: Voigt M, Proske D, Graf W, Beer M, Häussler-Combe U, Voigt P (eds) Proceedings of the 15th international probabilistic workshop and the 10th Dresdener Probabilistik workshop, 27–29. Sept 2017. TUD press, Dresden, pp 97–108

    Google Scholar 

  • Bolukbasi M, Mohammadi J, Arditi D (2004) Estimating the future condition of highway bridge components using national bridge inventory data, vol 9, no 1. Practical Periodical on Structural Design and Construction, ASCE, pp 16–24

    Google Scholar 

  • Boysen-Hogrefe J, Jannsen N, Gern K-J, Groll D, Kappler M, Kooths S, Sachs A, Scheide J (2013) Mittelfristprojektion für Deutschland im Frühjahr 2013, Institut für Weltwirtschaft an der Universität Kiel, Prognose-Zentrum, 20 Mar 2013

    Google Scholar 

  • Bozzolo D (1987) Ein mathematisches Modell zur Beschreibung der Dynamik von Steinschlag. ETH Zürich, Promotionsarbeit

    Google Scholar 

  • Brady S (2013) The 30 year failure cycle. The Structural Engineer, May 2013, pp 14–15

    Google Scholar 

  • Breysse D, Ndiaye A (2014) Failure case databases related to risk in civil engineering. In: Proceed-ings of the Institution of Civil Engineers—Forensic Engineering, Feb 2014, vol 167, issue 1, pp 27–37

    Google Scholar 

  • Briaud JL, Gardoni P, Yao C (2012) Bridge Scour risk. In: ICSE6 conference proceedings, Paris, 27–31 Aug 2012, pp 1193–1210

    Google Scholar 

  • Bridge Forum (2017) Bridge failure database. University of Cambridge. Available at: http://www.bridgeforum.org/dir/collapse/year/0000-3000.html

  • Brown CB (1979) A fuzzy safety measure. ASCE J Eng Mech Div 105:855–872

    Google Scholar 

  • Brückenweb (2017) Brückenkatastrophen - Einstürze - Unfälle (Datenbank), F. Selke (Impressum). http://www.brueckenweb.de/2content/datenbank/katastrophen/3katastrophen.php

  • Budelmann H, Holst A, Wachsmann A (2013) Durability related life-cycle assessment of concrete structures: mechanisms, models, implementation. In: Strauss A, Frangopol DM, Bergmeister K (eds) Life-cycle and sustainability of civil infrastruture sytems. CRC Press, Taylor and Francis, London, pp 47–54

    Google Scholar 

  • BMVBS (2013) Bericht Strategie zur Ertüchtigung der Straßenbrücken im Bestand der Bundesfernstrassen, Bundesministerium für Verkehr, Bau und Stadtentwicklung, 22 Mai 2013, Berlin

    Google Scholar 

  • Cabinet Office (2015) National risk register of civil emergencies, London

    Google Scholar 

  • Casas JR (2015) The bridges of the future or the future of bridges? Front Built Environ 1–3. https://doi.org/10.3389/fbuil.2015.00003

  • Christian GA (2010) Bridge Failures—Lessons learned. Bridge Engineering Course, University at Buffalo, 29 March 2010. http://mceer.buffalo.edu/education/bridge_speaker_series/2009-2010/presentations/P1%20Lessons%20learned%20from%20Bridge%20Failures_FINAL.pdf

  • Clifford Law Offices PC (2013) The shocking statistics on U.S. Bridge Collapses, 3 June 2013

    Google Scholar 

  • Cluff LS (2007) Effects of the 2004 Sumatra-Andaman Earthquake and Indian Ocean Tsunami in Aceh Province. The Bridge, National Academy of Engineering, Washington, pp 12–16

    Google Scholar 

  • Consolazio GR, Davidson MT, Getter DJ (2010) Vessel Crushing and Structural Collapse Relationships for Bridge Design, Aug 2010. University of Florida, Gainesville

    Google Scholar 

  • Cook W (2014) Bridge Failure Rates, Consequences, and Predictive Trends. Dissertation, Utah State University Logan

    Google Scholar 

  • Das PC (1997) Safety of Bridges. Thomas Telford, London

    Google Scholar 

  • Davidson MT (2010) Probability Assessment of Bridge Collapse under Barge Collision Loads, Dissertation, University of Florida: Gainesville

    Google Scholar 

  • Davis-Mcdaniel C (2011) Fault-tree model for bridge collapse risk analysis. M.Sc. Thesis, Clemson University

    Google Scholar 

  • Deng L, Wang W, Yu Y (2016) State-of-the-art review on the cause and mechanisms of bridge collapse. J Perform Constructed Facil 30(2)

    Google Scholar 

  • Diaz EEM, Moreno FN, Mohammadi J (2009) Investigation of common cause of bridge collapse in Colombia. Practice Periodical on Structural Design and Construction, vol 14, issue 4

    Google Scholar 

  • Diehm J, Hall K (2013) Bridge collapses and structurally deficient bridges across the country. Huffington Post 24(5):2013

    Google Scholar 

  • Dubbudu R (2016) An average of 7 structures collapsed per day in the last 5 years. Factly: Making Public Data Meaningful, 1 April 2016. https://factly.in/more-than-13000-lost-lives-in-structure-collapses-in-the-last-5-years/

  • Dunker KF (1993) Why America’s Bridges are crumbling, Scientific American, vol 266, no 3, Mar 1993, pp 18–25

    Google Scholar 

  • Duntemann JF, Subrizi CD (2000) Lessons learned from bridge construction failures. In: 2nd Forensic Engineering Congress, ASCE, Reston, VA, pp 374–385

    Google Scholar 

  • Eberlin S, Hock B (2014) Zuverlässigkeit und Verfügbarkeit technischer Systeme – Eine Einführung in die Praxis. Springer Vieweg, Wiesbaden

    Google Scholar 

  • Ellingwood B, Galambos TV, MacGregor JC, Cornell CA (1980) Development of a probabil-ity based load criteria for American National Standard A58, NBS Special Publication 577, U.S. Department of Commerce, National Bureau of Standard, Washington DC

    Google Scholar 

  • Ellingwood B, Galambos TV, MacGregor JC, Cornell, CA (1982) Probability based load criteria: Load factors and load combinations. J Struct Div, ASCE 108(5): 978–997

    Google Scholar 

  • Ellingwood BR (2001) Acceptable risk bases for design of structures. In: Progress in structural engineering and materials, vol 3, issue 2, Apr/June 2001, pp 170–179

    Google Scholar 

  • Elm DG (1998) System health approach for risk management and design. In: Shiraishi, Shinozuka, Wen (eds) Structural safety and reliability. Balkema, Rotterdam, pp 271–277

    Google Scholar 

  • Enright B, Caprani CC, O’Brien EJ (2011) Modelling of highway bridge traffic loading: some recent advances. In: 11th international conference on applications of statistics and probability in civil engineering (ICASP11), Zurich, 8 pages, on CD

    Google Scholar 

  • Eurocode 0 (2017) EN 1990 basis of structural design, 2nd edn, Draft 30 April 2017

    Google Scholar 

  • Fard B (2012) A comprehensive study on 100 bridge failures and their reduction strategies. Civil Engineering, University of Buffalo

    Google Scholar 

  • FHWA (2017) National Bridge Inventory (NBI). https://www.fhwa.dot.gov/bridge/nbi.cfm

  • Fischer M (2010) Bestimmung modifizierter Teilsicherheitsbeiwerte zur semi-probabilistischen Bemessung von Stahlbetonkonstruktionen im Bestand, Dissertation, Kaiserslautern

    Google Scholar 

  • Frandsen AG (1983) Accidents involving bridges. IABSE-reports 41:11–25

    Google Scholar 

  • Frangopol DM, Okasha NM (2008) Life-cycle performance and redundancy of structures In: Graubner CA, Schmidt D, Proske D (eds) Proceedings of the 6th international probabilistic workshop, Darmstadt, pp 1–14

    Google Scholar 

  • FSV (2017) Lebenszykluskostenermittlung für Brücken, RVS 13.05.11, Österreichische Forschungsgesellschaft Strasse – Schiene –Verkehr (FSV), Bundesministerium für Verkehr, Innovation und Technologie (bmvit), Vienna, 15 March 2017

    Google Scholar 

  • Fu Z, Ji B, Cheng M, Maeno H (2012) Statistical analysis of the causes of bridge collapse in China. In: Sixth congress on forensic engineering

    Google Scholar 

  • Gradner (2016) http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp

  • Gucma L (2015) Risk management in the area of bridge situated on waterways in the aspect of ships collisions. Marine Traffic Engineering—MTE, Szczecin

    Google Scholar 

  • Hamill L (1999) Bridge hydraulics. E & FN Spon, London

    Book  Google Scholar 

  • Hannawald F, Reintjes KH, Graße W (2003) Messwertgestützte Beurteilung des Ge-brauchsverhaltens einer Stahlverbund-Autobahnbrücke. Stahlbau 72(7):507–516

    Article  Google Scholar 

  • Harik IE, Shaaban AM, Gesund H, Valli YS, Wang ST (1990) United States bridge failures, 1951–1988. J Perform Constructed Facil (ASCE) 4(4):272–277

    Article  Google Scholar 

  • Hersi M (2009) Analysis of bridge failure in United States (2000–2008). Ohio State University. Master of Science Thesis

    Google Scholar 

  • Hong JH, Chiew YM, Lu JY, Lai JS, Lin YB (2012) Houfeng bridge failure in Taiwan. J Hydraulic Eng pp 186–198

    Google Scholar 

  • Imam BM, Chryssanthopoulos MK (2012) Causes and consequences of metallic bridge failures. Struct Eng Int 22(1):93–98

    Article  Google Scholar 

  • Imhof D (2004) Risk assessment of existing bridge structures. University of Cam-bridge. Dissertation, Kings College

    Google Scholar 

  • Jaeger TA (1970) Das Risikoproblem in der Technik. Schweizer Archiv 36:201–207

    Google Scholar 

  • Jan C-D, Chen C-L (2005) Debris flows caused by Typhoon Herb in Taiwan. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Springer, Berlin-Heidelberg, pp 539–563

    Google Scholar 

  • Kosa J (2014) Damage analysis of bridges affected by the Tsunami in the Great East Japan earthquake. J JSCE 2:77–93

    Article  Google Scholar 

  • Kotes P, Vican J (2012) Reliability levels for existing bridges evaluation according to Eurocode. Procedia Eng 40:211–2016

    Article  Google Scholar 

  • Kraus U (2012) Lehren aus 2002 - Erfahrungen und Maßnahmen, Konferenz “Alle in einem Boot” - 10 Jahre transnationale Zusammenarbeit beim Hochwasserrisikomanagement an der Labe-Elbe, 21–22 June 2012, Präsentation

    Google Scholar 

  • Kurrer KE (2012) The History of the Theory of Structures: From Arch Analysis to Computational Mechanics. Ernst & Sohn, Auflage 1

    Google Scholar 

  • Lee GC, Mohan SB, Huang C, Fard BN (2013a) A study of U.S. bridge failures (1980–2012). Technical report MCEER-13-0008, 15 June 2013, University at Buffalo, State University of New York

    Google Scholar 

  • Lee GC, Qi J, Huang C (2013b) Development of a database framework for modelling damaged bridges. Technical report MCEER-13-0009, 16 Jun 2013, University at Buffalo, State University of New York

    Google Scholar 

  • Lehmann U (2003) Die Flutkatastrophe in Sachsen-hohe Schäden im ÖPNV. In: VDV Jahresbericht 2002–2003, Köln, pp 108–109

    Google Scholar 

  • Main-Netz (2009) Bei Schiffskollision nicht alle standfest. www.main-netz.de/nachrichten/ region/aschaffenburg/aschaffenburg-land/land/art3986.678394

  • Maruyama K, Tanaka Y, Hosoda A (2012) Damage of bridges structures by huge Tsunami and evaluation of Tsunami force on bridges. In: The 8th international symposium on social management systems, SSMS2012—Disaster prevention and reconstruction management. 2–4 May 2012, Kaohsiung, Taiwan

    Google Scholar 

  • Mastaglio L (1997) Bridge bashing. Civil Eng pp 38–40

    Google Scholar 

  • McLinn J (2010) Major bridge collapses in the US and around the world. IEEE Reliability society 2009 annual technology report. IEEE transactions on reliability, vol 59, heft 3, September 2010, 5 pages

    Google Scholar 

  • McSaveny MJ, Davies TRH (2005) Engineering for debris flows in New Zealand. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Springer, Berlin-Heidelberg, pp 635–658

    Google Scholar 

  • Mende V (2016) Militärischer Einfluss auf Konstruktion und Architektur von Eisenbahnbrücken im Deutschen Reich, Tagungsband des 26. In: Dresdner Brückenbausymposiums, Technische Universität Dresden, Dresden, 14–15 Mar 2016, pp 221–233

    Google Scholar 

  • Menzies JB (1996) Bridge failures, hazards and societal risk. In: International Symposium on the Safety of Bridges, July 1996, London

    Google Scholar 

  • Metzner A (2002) Die Tücken der Objekte – Über die Risiken der Gesellschaft und ihre Wirklichkeit. Campus Verlag GmbH, Frankfurt Main

    Google Scholar 

  • Michler H (2013) Innovativ! Leicht! Formbar! Bewährt! - Textilbetonbrücke Rottachsteg Kempten im Allgäu. In: Proceedings of the 23. Dresdner Brückenbausymposium, Technische Universität Dresden, Dresden, pp 239–252

    Google Scholar 

  • Michler H (2016) Verstärken mit Carbonbeton im Brückenbau, 26. In: Dresdner Brückenbausymposium, Technische Universität Dresden, 14–15 Mar 2016, pp 235–248

    Google Scholar 

  • MLIT (2005) The maintenance of national road network in Japan. Ministry of land, infrastructure, transport and tourism. http://www.mlit.go.jp/road/road_e/03key_challenges/1-2-2.pdf

  • Montalvo C, Cook W (2017) Validating common collapse conjectures in the U.S. bridges. In: 11th international bridge and structure management conference, 25–27 April 2017, Mesa, Arizona, 13 pages

    Google Scholar 

  • Morrissey MM, Savage WZ, Wieczorek GF (1999) Air blasts generated by rockfall impacts: analysis of the 1996 Happy Isles event in Yosemite National Park. J Geophys Res 104(B10):23189–23198

    Article  Google Scholar 

  • Nachrichten S (2017) Bröckelnde Bahnbrücken – Mehr als 100 Bauwerke im Land marode, 27 May 2017

    Google Scholar 

  • Nagel L-M, Pauly M, Mucha V, Setzer J, Wilhelm F (2016) Wettlauf gegen den Verfall, Die Welt. http://www.welt.de/politik/interaktiv/bruecken/deutschlands-bruecken-wettlauf-gegen-den-verfall.html, https://docs.google.com/spreadsheets/d/1h_NKP3lvTnoQBFjCRa9gJLLOi2rxtIMeNucvAUsPwtI/edit?pref=2&pli=1#gid=0

  • Naumann J (2002) Aktuelle Schwerpunkte im Brückenbau, 12. Dresdner Brückenbausymposium, Lehrstuhl für Massivbau und Freunde des Bauingenieurwesens e.V., 2002, pp 43–5

    Google Scholar 

  • Naumann J (2004) Bauwerksprüfung nach DIN 1076 - Bedeutung, Verantwortung, Durchführung, 14 Dresdner Brückenbausymposium. TU Dresden und Verein der Freunde des Bauingenieurwesens, Dresden, pp 53–64

    Google Scholar 

  • Nendo S, Niczyj J (1998) Reliability estimation of trusses by using fuzzy set. In: Shiraishi, Shinozuka & Wen (eds) Structural safety and reliability. Balkema, Rotterdam, pp 317–324

    Google Scholar 

  • NIST (2006) Performance of physical structures in Hurricane Katrina and Hurricane Rita: a reconnaissance report, NIST technical note 1476. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  • Nowak AS, Collins KR (2012) Reliability of structures, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Oberländer B (2012) Brücke über den Sundgraben hängt in den Seilen, BZ Berner Zeitung. http://www.bernerzeitung.ch/region/thun/Bruecke-ueber-den-Sundgraben–haengt-in-den-Seilen-/story/27896453. Accessed 24 May 2012

  • Petroski H (2006) Success through Failure: The Paradox of Design. Princeton University Press, Princeton

    Google Scholar 

  • Petschacher M (2007) Stochastisches Alterungsmodell für Infrastrukturbauten - Untersuchung des Brückenbestandes im hochrangigen Strassennetz. PEC - Petschacher Consulting, ZT GmbH, Feldkirch

    Google Scholar 

  • Pircher M, Kammersberger A, Lechner B, Mariani O (2009) Schädigung einer schlaff bewehrten Betonbrücke durch Verkehrsbelastung. Beton- und Stahlbetonbau 104(3):154–163

    Article  Google Scholar 

  • Proske D (2004) Beitrag zur Risikobewertung von alten Brücken bei Schiffsanprall. Dissertation, Technisch Universität Dresden, Dresden

    Google Scholar 

  • Proske D (2015) The uncertainty of the estimation of natural life loads. Bautechnik 92(12):854–859

    Article  Google Scholar 

  • Proske D, van Gelder P (2009) Safety of historical stone arch bridges. Springer, Berlin—Heidelberg

    Book  Google Scholar 

  • Pugsley A (1968) The safety of bridges. The Struct Eng 46:197

    Google Scholar 

  • Raithel, M, Leusink E, Franke H-J, Haupt R (2011) Geotechnische Problemstellungen bei der Sicherung bestehender Mainbrücken gegen Schiffstoß. Geotechnik-Tag in München 2011, 4 März 2011

    Google Scholar 

  • Reichelt A, Richter S (2003) Hochwasserschäden im Vorlandbereich der Elbebrücke Riesa - Maßnahmen zu deren Beseitigung, 13. Dresdner Brückenbausymposium, TU Dresden und der Verein der Freunde des Bauingenieurwesens, pp 157–187

    Google Scholar 

  • Scheer J (2010) Failed bridges–Case studies, Causes and Consequences. Wilhelm Ernst & Sohn, Berlin

    Google Scholar 

  • Schneider R, Fischer J, Bügler M, Nowak M, Thöns S, Borrmann A, Straub D (2015) Assessing and updating the reliability of concrete bridges subjected to spatial deterioration—principles and software implementation. Struct Concrete 16(3):356–365

    Article  Google Scholar 

  • Seipelt D, Eschweiler S, Neysters T, Coors B, Grassl M (2016) Reparatur der Autobahnbrücke über die Süderelbbrücke nach schwerem Schiffsanprall - Nachrechnung, Planung, Ausführung, Analyse, 26. Dresdner Brückenbausymposum, Technische Universität Dresden & Verein der Freunde des Bauingenieurwesens, pp 165–176

    Google Scholar 

  • Sharma S (2010) A comprehensive study on bridge failures in the United States and their comparison with bridge failure in other countries. M.Sc. Project, Department of Civil, Structural and Environmental Engineering, University of Buffalo, Buffalo

    Google Scholar 

  • Sharma S, Mohan S (2011) Status of bridge failures in the United States (1800–2009). TRB 90th annual meeting: transportation, liveability, and economic development in a changing World, Washington D.C.

    Google Scholar 

  • Shoji G, Moriyama T (2007) Evaluation of the structural fragility of a bridge structure subjected to a Tsunami wave load. J Nat Disaster Sci 29:73–81

    Article  Google Scholar 

  • Shroder JF (2014) Natural resources in Afghanistan: geographic and geologic perspectives on centuries of conflict. Elsevier, San Diego

    Google Scholar 

  • SIA 269 (2007) Grundlagen der Erhaltung von Tragwerken; Schweizerischer Ingenieur-und Architektenverein, Zürich, Draft 03/2007

    Google Scholar 

  • Sibly PG, Walker AC (1977) Structural accidents and their causes. Proceedings of the Institution of Civil Engineers, 62(2):191–208

    Google Scholar 

  • Simandl T, Glatzl J, Schweighofer B, Blovsky S (2006) Schiffsanprall an die Eisenbahnbrücke in Krems. Erstmalige Anwendung des neuen Eurocode EN 1991-1-7 für Außergewöhnliche Einwirkungen. Beton- und Stahlbetonbau 101(9):722–728

    Article  Google Scholar 

  • Smith DW (1976) Bridge failures. In: Proceedings of the institution of civil engineers, vol 60, issue 3, August 1976, pp 367–382

    Google Scholar 

  • Sornette D (2000) Critical phenomena in natural sciences, chaoss, fractals, selforganization and disorder: concepts and tools. Springer-Verlag, Berlin—Heidelberg

    Google Scholar 

  • Spaethe G (1992) Die Sicherheit tragender Baukonstruktionen, zweite, neubearbeite Auflage. Springer, Wien

    Google Scholar 

  • Stallings RA (1990) Media discourse and the social construction of risk. Soc Probl 37(1):80–95

    Article  Google Scholar 

  • Starr C (1969) Social benefit versus technological risk. Science 165:1232–1238

    Google Scholar 

  • Steedman S (2010) The Long Learningcurve, Ingenia, Issue 44, September 2010, pp 3

    Google Scholar 

  • Stulc J (2015) The 2002 floods in the Czech Republic and their impact on built heritage, pp 133–137

    Google Scholar 

  • Taricska MR (2014) An analysis of recent bridge failures in the United States (2000–2012). M.Sc. Thesis, The Ohio State University

    Google Scholar 

  • Tweed MH (1969) A summary and analysis of bridge failures. Master Thesis, Iowa State Uni-versity, Ames

    Google Scholar 

  • Unjoh S (2005) Damage to transportation facilities, the damage induced by Sumatra earthquake and associated Tsunami of 26 Dec 2004. A report of the reconnaissance team of Japan society of civil engineers, pp 66–76

    Google Scholar 

  • Van Lente H, Spitters Ch, Peine A (2011) Comparing technological hype cycles: towards a theory. ISU working paper 11.03, Innovation Studies Utrecht (ISU), Utrecht University, Copernicus Institute of Sustainable Development

    Google Scholar 

  • Vogel T, Zwicky D, Joray D, Diggelmann M, Hoj NP (2009) Tragsicherheit der bestehenden Kunstbauten, Sicherheit des Verkehrssystems Strasse und dessen Kunstbauten, Bundesamt für Strassen, Dezember 2009, Bern

    Google Scholar 

  • Vollrath F, Tathoff H (2002) Handbuch der Brückeninstandhaltung. VBT Verlag Bau + Technik, Düsseldorf

    Google Scholar 

  • von Kirchbach H-P, Franke S, Biele H (2002) Bericht der Unabhängigen Kommission der Sächsischen Staatsregierung Flutkatastrophe 2002, Dresden

    Google Scholar 

  • Wang N (2010) Reliability-Based Condition Assessment of Existing Highway Bridges. Dissertation, Georgia Institute of Technology, August 2010

    Google Scholar 

  • Wardhana K, Hadipriono FC (2003) Analysis of recent bridge failures in the United States. J Perform Constructed Facil ASCE 144–150

    Google Scholar 

  • Weber WL (1999) Die gewölbte Eisenbahnbrücke mit einer Öffnung. Dissertation, Techni-sche Universität München, München

    Google Scholar 

  • Wei X, Wang Q, Wang J (2008) Damage pattern and failure mechanisms of bridge pile foundation under earthquake. In: Proceedings of the 14th world conference on earthquake engineering, 12–17 October 2008, on CD, Beijing, China, 7p

    Google Scholar 

  • Wenk T (2005) Beurteilung der Erdbebensicherheit bestehender Straßenbrücken. Bundesamt für Strassen ASTRA, Bern

    Google Scholar 

  • Wikipedia (2017) List of bridge failures. https://en.wikipedia.org/wiki/List_of_bridge_failures

  • Woodward RJ, Kaschner R, Cremona C, Cullington D (1999) Review of current procedures for assessing load carrying capacity—status C, BRIME PL97-2220, Jan 1999

    Google Scholar 

  • Xu FY, Zhang MJ, Wang L, Zhang JR (2016) Recent highway bridge collapses in China: review and discussion. J Perform Constructed Facil 30(5) (Oct 2016), 8p

    Google Scholar 

  • Yan BF, Shao XD (2008) Application of China bridge management system in Qinyuan city. In: Koh HM, Frangopol DM (eds) Bridge maintenance, safety, management, health monitoring and informatics. Taylor & Francis Group, London, pp 2675–2682

    Google Scholar 

  • Yim SC, Azadbakht M (2013) Tsunami forces on selected California coastal bridges. School of Civil & Construction Engineering, Oregon State University. Final report No. CA13-1983

    Google Scholar 

  • Zerna W (1983) Grundlage der gegenwärtigen Sicherheitspraxis in der Bautechnik. In: Hartwig S (ed) Große technische Gefahrenpotentiale: Risikoanalysen und Sicherheitsfragen. Springer Verlag, Berlin—Heidelberg, pp 99–109

    Chapter  Google Scholar 

  • Zhang S (1993) A comprehensive approach to the observation and prevention of debris flow in China. Nat Hazards 7:1–23

    Article  Google Scholar 

  • Zhang XG, Liu G, Ma JH, Wu HB, Wu WM (2014) Design concept and approach on sustainable development of bridge engineering. In: Chen A, Frangopol DM, Ruan X (eds) Bridge maintenance, safety, management and life extension. CRC Press, London, pp 1831–1838

    Google Scholar 

  • Zhang J, Chen X, Liu D, Li X (2016) Analysis of bridge response to barge collision: Refined impact force models and some new insights. Adv Struct Eng 19(8):1–21

    Article  Google Scholar 

  • Zorn M, Komac B (2008) The debris flow in Log pod Mangartom, NW Slovenia, WIT transactions on engineering sciences, vol 60. In: Wrachien, Aristide, Brebbia (eds) Monitoring, simulation, prevention and remediation of dense debris flows II. WIT Press, pp 125–133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Proske .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Proske, D. (2018). Collapse Frequencies of Bridges. In: Bridge Collapse Frequencies versus Failure Probabilities. Risk Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73833-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73833-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73832-1

  • Online ISBN: 978-3-319-73833-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics