Skip to main content

Multichannel Multiple Scattering Theory in R-Matrix Formalism

  • Conference paper
  • First Online:
Multiple Scattering Theory for Spectroscopies

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 204))

  • 780 Accesses

Abstract

Multichannel multiple scattering theory (MCMS) in R-matrix formulation is introduced for x-ray absorption spectra calculations from spin-orbit split core-levels. A multichannel extension of scattering theory is motivated by the occurrence of strong electron correlation effects of the atomic multiplet type. MCMS is implemented in real-space multiple scattering theory with a correlated particle-hole wave function and the multichannel scattering matrix of the core-level site is computed using the variational R-matrix method. This affords an accurate and numerically efficient treatment of strong particle-hole configuration mixing induced by core-valence Coulomb coupling. Applications of MCMS to \(L_{2,3}\)-edge spectra of light transition elements are reviewed and shown to give excellent results for metallic and insulating Ca and Ti compounds, where long range band structure effects and particle-hole coupling must be treated on an equal footing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. de Groot, A. Kotani, Core Level Spectroscopy of Solids (CRC Press, Taylor and Francis, 2008)

    Google Scholar 

  2. J. Schwitalla, H. Ebert, Phys. Rev. Lett. 80, 4586 (1998)

    Article  ADS  Google Scholar 

  3. A.L. Ankudinov, A.I. Nesvizhskii, J.J. Rehr, Phys. Rev. B 67, 115120 (2003)

    Google Scholar 

  4. G.F.M. Stener, M. de Simone, Chem. Phys. Lett. 373, 115123 (2003)

    Article  Google Scholar 

  5. O. Bunău, Y. Joly, Phys. Rev. B 85, 155121 (2012)

    Article  ADS  Google Scholar 

  6. E.L. Shirley, J. Electron Spectrosc. Relat. Phenom. 144, 1187 (2005)

    Article  Google Scholar 

  7. R. Laskowski, P. Blaha, Phys. Rev. B 82, 205104 (2010)

    Article  ADS  Google Scholar 

  8. K. Ogasawara, T. Iwata, Y. Koyama, T. Ishii, I. Tanaka, H. Adachi, Phys. Rev. B 64, 115413 (2001)

    Article  ADS  Google Scholar 

  9. S.D.D. Maganas, F. Neese, Inorg. Chem. 53, 6374 (2014)

    Article  Google Scholar 

  10. M.W. Haverkort, M. Zwierzycki, O.K. Andersen, Phys. Rev. B 85, 165113 (2012)

    Article  ADS  Google Scholar 

  11. P. Krüger, C.R. Natoli, Phys. Rev. B 70, 245120 (2004)

    Article  ADS  Google Scholar 

  12. C.R. Natoli, M. Benfatto, C. Brouder, M.F. Ruiz López, D.L. Foulis, Phys. Rev. B 42, 1944 (1990)

    Article  ADS  Google Scholar 

  13. A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  14. K. Smith, R.J.W. Henry, P.G. Burke, Phys. Rev. 147, 21 (1966)

    Article  ADS  Google Scholar 

  15. J. Korringa, Physica 13, 392 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  16. W. Kohn, N. Rostoker, Phys. Rev. 94, 1111 (1954)

    Article  ADS  Google Scholar 

  17. S.H. Chou, J.J. Rehr, E.A. Stern, E.R. Davidson, Phys. Rev. B 35, 2604 (1987)

    Article  ADS  Google Scholar 

  18. K. Smith, R.J.W. Henry, P.G. Burke, Phys. Rev. 157, 51 (1967)

    Article  ADS  Google Scholar 

  19. P.G. Burke, K.A. Berrington, Atomic and Molecular Processes: an R-Matrix Approach (IOP Publishing, Bristol and Philadelphia, 1993)

    Google Scholar 

  20. M. Aymar, C.H. Greene, E. Luc-Koenig, Rev. Mod. Phys. 68, 1015 (1996)

    Article  ADS  Google Scholar 

  21. W. Kohn, Phys. Rev. 74, 1763 (1948)

    Article  ADS  Google Scholar 

  22. D.D. Vvedensky, in Unoccupied Electronic States, ed. by J.C. Fuggle and J.E. Inglesfield (Springer, Berlin, 1992), chap. 5, pp. 139–176

    Google Scholar 

  23. J. Demmel, J. Dongarra, J. Langou, Linear Algebra Package. http://www.netlib.org/lapack/

  24. O.K. Andersen, O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984)

    Article  ADS  Google Scholar 

  25. C.R. Natoli, D.K. Misemer, S. Doniach, F.W. Kutzler, Phys. Rev. A 22, 1104 (1980)

    Article  ADS  Google Scholar 

  26. J. Zaanen, G.A. Sawatzky, J. Fink, W. Speier, J.C. Fuggle, Phys. Rev. B 32, 4905 (1985)

    Article  ADS  Google Scholar 

  27. R.D. Cowan, Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981)

    Google Scholar 

  28. F.J. Himpsel, U.O. Karlsson, A.B. McLean, L.J. Terminello, F.M.F. de Groot, M. Abbate, J.C. Fuggle, J.A. Yarmoff, B.T. Thole, G.A. Sawatzky, Phys. Rev. B 43, 6899 (1991)

    Article  ADS  Google Scholar 

  29. F.M.F. de Groot, J.C. Fuggle, B.T. Thole, G.A. Sawatzky, Phys. Rev. B 41, 928 (1990)

    Article  ADS  Google Scholar 

  30. P. Krüger, Phys. Rev. B 81, 125121 (2010)

    Article  ADS  Google Scholar 

  31. L.E. Walle, S. Agnoli, I.H. Svenum, A. Borg, L. Artiglia, P. Krüger, A. Sandell, G. Granozzi, J. Chem. Phys. 135, 054706 (2011)

    Article  ADS  Google Scholar 

  32. C. Bittencourt, P. Krüger, M.J. Lagos, X. Ke, G.V. Tendeloo, C. Ewels, P. Umek, P. Guttmann, Beilstein J. Nanotechnol. 3, 789 (2012). ISSN 2190-4286

    Google Scholar 

  33. X. Zhu, A.P. Hitchcock, C. Bittencourt, P. Umek, P. Krüger, J. Phys. Chem. C 119, 24192 (2015)

    Article  Google Scholar 

  34. F.M.F. de Groot, M.O. Figueiredo, M.J. Basto, M. Abbate, H. Petersen, J.C. Fuggle, Phys. Chem. Miner. 19, 140 (1992). ISSN 1432-2021

    Google Scholar 

  35. K. Okada, A. Kotani, J. Electron Spectrosc. Relat. Phenom. 62, 131 (1993)

    Article  Google Scholar 

  36. J.P. Crocombette, F. Jollet, J. Phys. Condens. Matter 6, 10811 (1994)

    Article  ADS  Google Scholar 

  37. R. Brydson, H. Sauer, W. Engel, J.M. Thomas, E. Zeitler, N. Kosugi, H. Kuroda, J. Phys. Condens. Matter 1, 797 (1989)

    Article  ADS  Google Scholar 

  38. M. Mattesini, J.S. de Almeida, L. Dubrovinsky, L. Dubrovinskaia, B. Johansson, R. Ahuya, Phys. Rev. B 70, 115101 (2004)

    Article  ADS  Google Scholar 

  39. M.T. Czyzyk, G.A. Sawatzky, Phys. Rev. B 49, 14211 (1994)

    Article  ADS  Google Scholar 

  40. P. Krüger, Unpublished

    Google Scholar 

  41. C.R. Natoli, P. Krüger, K. Hatada, K. Hayakawa, D. Sébilleau, O. Sipr, J. Phys. Condens. Matter 24, 365501 (2012)

    Article  Google Scholar 

  42. P. Krüger, J. Phys. Conf. Ser. 190, 012006 (2009)

    Google Scholar 

Download references

Acknowledgements

My deepest thanks go to Prof. Calogero “Rino” Natoli, the inventor of multichannel multiple scattering theory. Rino introduced me to this interesting subject and taught me all I know about multiple scattering theory. Without his vision, enthusiasm and great direct contribution, this project could not have been accomplished. Also, I am grateful to many people for advice and fruitful discussions over the years on various aspects of multiple scattering theory and correlation effects in core-level spectroscopy. These people include, in alphabetical order, Dr. Oana Bunau, Dr. Fabiana Da Pieve, Prof. Hubert Ebert, Prof. Frank de Groot, Dr. Keisuke Hatada, Dr. Yves Joly, Prof. Akio Kotani, Dr. Jan Minar, Dr. Didier Sébilleau and Dr. Ondřej Šipr. Finally I would like to thank Dr. Kuniko Hayakawa and Prof. Fabrizio Palumbo for their warm hospitality during my visits at the LNF-INFN in Frascati, where main ideas of this work emerged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Krüger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krüger, P. (2018). Multichannel Multiple Scattering Theory in R-Matrix Formalism. In: Sébilleau, D., Hatada, K., Ebert, H. (eds) Multiple Scattering Theory for Spectroscopies. Springer Proceedings in Physics, vol 204. Springer, Cham. https://doi.org/10.1007/978-3-319-73811-6_5

Download citation

Publish with us

Policies and ethics