Multichannel Multiple Scattering Theory in R-Matrix Formalism

  • Peter Krüger
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 204)


Multichannel multiple scattering theory (MCMS) in R-matrix formulation is introduced for x-ray absorption spectra calculations from spin-orbit split core-levels. A multichannel extension of scattering theory is motivated by the occurrence of strong electron correlation effects of the atomic multiplet type. MCMS is implemented in real-space multiple scattering theory with a correlated particle-hole wave function and the multichannel scattering matrix of the core-level site is computed using the variational R-matrix method. This affords an accurate and numerically efficient treatment of strong particle-hole configuration mixing induced by core-valence Coulomb coupling. Applications of MCMS to \(L_{2,3}\)-edge spectra of light transition elements are reviewed and shown to give excellent results for metallic and insulating Ca and Ti compounds, where long range band structure effects and particle-hole coupling must be treated on an equal footing.



My deepest thanks go to Prof. Calogero “Rino” Natoli, the inventor of multichannel multiple scattering theory. Rino introduced me to this interesting subject and taught me all I know about multiple scattering theory. Without his vision, enthusiasm and great direct contribution, this project could not have been accomplished. Also, I am grateful to many people for advice and fruitful discussions over the years on various aspects of multiple scattering theory and correlation effects in core-level spectroscopy. These people include, in alphabetical order, Dr. Oana Bunau, Dr. Fabiana Da Pieve, Prof. Hubert Ebert, Prof. Frank de Groot, Dr. Keisuke Hatada, Dr. Yves Joly, Prof. Akio Kotani, Dr. Jan Minar, Dr. Didier Sébilleau and Dr. Ondřej Šipr. Finally I would like to thank Dr. Kuniko Hayakawa and Prof. Fabrizio Palumbo for their warm hospitality during my visits at the LNF-INFN in Frascati, where main ideas of this work emerged.


  1. 1.
    F. de Groot, A. Kotani, Core Level Spectroscopy of Solids (CRC Press, Taylor and Francis, 2008)Google Scholar
  2. 2.
    J. Schwitalla, H. Ebert, Phys. Rev. Lett. 80, 4586 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    A.L. Ankudinov, A.I. Nesvizhskii, J.J. Rehr, Phys. Rev. B 67, 115120 (2003)Google Scholar
  4. 4.
    G.F.M. Stener, M. de Simone, Chem. Phys. Lett. 373, 115123 (2003)CrossRefGoogle Scholar
  5. 5.
    O. Bunău, Y. Joly, Phys. Rev. B 85, 155121 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    E.L. Shirley, J. Electron Spectrosc. Relat. Phenom. 144, 1187 (2005)CrossRefGoogle Scholar
  7. 7.
    R. Laskowski, P. Blaha, Phys. Rev. B 82, 205104 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    K. Ogasawara, T. Iwata, Y. Koyama, T. Ishii, I. Tanaka, H. Adachi, Phys. Rev. B 64, 115413 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    S.D.D. Maganas, F. Neese, Inorg. Chem. 53, 6374 (2014)CrossRefGoogle Scholar
  10. 10.
    M.W. Haverkort, M. Zwierzycki, O.K. Andersen, Phys. Rev. B 85, 165113 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    P. Krüger, C.R. Natoli, Phys. Rev. B 70, 245120 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    C.R. Natoli, M. Benfatto, C. Brouder, M.F. Ruiz López, D.L. Foulis, Phys. Rev. B 42, 1944 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    K. Smith, R.J.W. Henry, P.G. Burke, Phys. Rev. 147, 21 (1966)ADSCrossRefGoogle Scholar
  15. 15.
    J. Korringa, Physica 13, 392 (1947)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    W. Kohn, N. Rostoker, Phys. Rev. 94, 1111 (1954)ADSCrossRefGoogle Scholar
  17. 17.
    S.H. Chou, J.J. Rehr, E.A. Stern, E.R. Davidson, Phys. Rev. B 35, 2604 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    K. Smith, R.J.W. Henry, P.G. Burke, Phys. Rev. 157, 51 (1967)ADSCrossRefGoogle Scholar
  19. 19.
    P.G. Burke, K.A. Berrington, Atomic and Molecular Processes: an R-Matrix Approach (IOP Publishing, Bristol and Philadelphia, 1993)Google Scholar
  20. 20.
    M. Aymar, C.H. Greene, E. Luc-Koenig, Rev. Mod. Phys. 68, 1015 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    W. Kohn, Phys. Rev. 74, 1763 (1948)ADSCrossRefGoogle Scholar
  22. 22.
    D.D. Vvedensky, in Unoccupied Electronic States, ed. by J.C. Fuggle and J.E. Inglesfield (Springer, Berlin, 1992), chap. 5, pp. 139–176Google Scholar
  23. 23.
    J. Demmel, J. Dongarra, J. Langou, Linear Algebra Package.
  24. 24.
    O.K. Andersen, O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    C.R. Natoli, D.K. Misemer, S. Doniach, F.W. Kutzler, Phys. Rev. A 22, 1104 (1980)ADSCrossRefGoogle Scholar
  26. 26.
    J. Zaanen, G.A. Sawatzky, J. Fink, W. Speier, J.C. Fuggle, Phys. Rev. B 32, 4905 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    R.D. Cowan, Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981)Google Scholar
  28. 28.
    F.J. Himpsel, U.O. Karlsson, A.B. McLean, L.J. Terminello, F.M.F. de Groot, M. Abbate, J.C. Fuggle, J.A. Yarmoff, B.T. Thole, G.A. Sawatzky, Phys. Rev. B 43, 6899 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    F.M.F. de Groot, J.C. Fuggle, B.T. Thole, G.A. Sawatzky, Phys. Rev. B 41, 928 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    P. Krüger, Phys. Rev. B 81, 125121 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    L.E. Walle, S. Agnoli, I.H. Svenum, A. Borg, L. Artiglia, P. Krüger, A. Sandell, G. Granozzi, J. Chem. Phys. 135, 054706 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    C. Bittencourt, P. Krüger, M.J. Lagos, X. Ke, G.V. Tendeloo, C. Ewels, P. Umek, P. Guttmann, Beilstein J. Nanotechnol. 3, 789 (2012). ISSN 2190-4286Google Scholar
  33. 33.
    X. Zhu, A.P. Hitchcock, C. Bittencourt, P. Umek, P. Krüger, J. Phys. Chem. C 119, 24192 (2015)CrossRefGoogle Scholar
  34. 34.
    F.M.F. de Groot, M.O. Figueiredo, M.J. Basto, M. Abbate, H. Petersen, J.C. Fuggle, Phys. Chem. Miner. 19, 140 (1992). ISSN 1432-2021Google Scholar
  35. 35.
    K. Okada, A. Kotani, J. Electron Spectrosc. Relat. Phenom. 62, 131 (1993)CrossRefGoogle Scholar
  36. 36.
    J.P. Crocombette, F. Jollet, J. Phys. Condens. Matter 6, 10811 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    R. Brydson, H. Sauer, W. Engel, J.M. Thomas, E. Zeitler, N. Kosugi, H. Kuroda, J. Phys. Condens. Matter 1, 797 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    M. Mattesini, J.S. de Almeida, L. Dubrovinsky, L. Dubrovinskaia, B. Johansson, R. Ahuya, Phys. Rev. B 70, 115101 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    M.T. Czyzyk, G.A. Sawatzky, Phys. Rev. B 49, 14211 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    P. Krüger, UnpublishedGoogle Scholar
  41. 41.
    C.R. Natoli, P. Krüger, K. Hatada, K. Hayakawa, D. Sébilleau, O. Sipr, J. Phys. Condens. Matter 24, 365501 (2012)CrossRefGoogle Scholar
  42. 42.
    P. Krüger, J. Phys. Conf. Ser. 190, 012006 (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of EngineeringChiba UniversityChibaJapan

Personalised recommendations