Advertisement

The Endocrine Response to Critical Illness

  • Katherine Ratzan Peeler
  • Michael S. D. Agus
Chapter

Abstract

The endocrine response to critical illness is composed of acute and chronic responses. The acute response is considered adaptive as a means of responding to physiologic stress. In this phase, stress stimulates the hypothalamic-pituitary-adrenal (HPA) axis, peripherally inactivates the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes, increases secretion of growth hormone, and induces insulin resistance and protein catabolism. The concept, diagnosis, and treatment of critical illness-related corticosteroid insufficiency remain controversial. The chronic response to critical illness is marked by central suppression of the HPT, HPG, and GH axes. This phase is particularly notable for continued protein catabolism and insulin resistance associated with significant morbidity and mortality.

Keywords

Adrenal Thyroid Growth hormone Androgen Critical illness-related corticosteroid insufficiency Hypothyroxinemia of non-thyroidal illness Endocrinopathies in critical illness 

References

  1. 1.
    Van den Berghe G, de Zegher F, Bouillon R. Acute and prolonged critical illness as different neuroendocrine paradigms. J Clin Endocrinol Metab. 1998;83(6):827–34.Google Scholar
  2. 2.
    Vanhorebeek I, Langouche L, Van den Berghe G. Endocrine aspects of acute and prolonged critical illness. Nat Clin Pract Endocrinol Metab. 2006;2(1):20–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Brown-Sequard CE. Recherches experimentales sur la physiologie et la pathologie des capsules surrenales, C. R. Acad Sci [D]: Paris. 1956, pp. 422–25.Google Scholar
  4. 4.
    Vermes I, Beishuizen A, Hampsink RM, Haanen C. Dissociation of plasma adrenocorticotropin and cortisol levels in critically ill patients: possible role of endothelin and atrial natriuretic hormone. J Clin Endocrinol Metab. 1995;80(4):1238–42.PubMedGoogle Scholar
  5. 5.
    Boonen E, Vervenne H, Meersseman P, Andrew R, Mortier L, Declercq PE, Vanwijngaerden Y-M, Spriet I, Wouters PJ, Vander Perre S, et al. Reduced cortisol metabolism during critical illness. N Engl J Med. 2013;368(16):1477–88.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Boonen E, Van den Berghe G. Endocrine responses to critical illness: novel insights and therapeutic implications. J Clin Endocrinol Metab. 2014;99(5):1569–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Boonen E, Van den Berghe G. New concepts to further unravel adrenal insufficiency during critical illness. Eur J Endocrinol. 2016;175(1):R1–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Munck A, Guyre PM, Holbrook NJ. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev. 1984;5(1):25–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Wurtman RJ, Axelrod J. Adrenaline synthesis: control by the pituitary gland and adrenal glucocorticoids. Science. 1965;150(702):1464–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Wong DL, et al. Glucocorticoid regulation of phenylethanolamine N-methyltransferase in vivo. FASEB J. 1992;6(14):3310–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Tai TC, et al. Stress-induced changes in epinephrine expression in the adrenal medulla in vivo. J Neurochem. 2007;101:1108–18.PubMedCrossRefGoogle Scholar
  12. 12.
    Annane D, et al. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA. 2000;283(8):1038–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Marik PE. Critical illness-related corticosteroid insufficiency. Chest. 2009;135(1):181–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Annane D, et al. Diagnosis of adrenal insufficiency in severe sepsis and septic shock. Am J Respir Crit Care Med. 2006;174(12):1319–26.PubMedCrossRefGoogle Scholar
  15. 15.
    Levy-Shraga Y, et al. Elevated baseline cortisol levels are predictive of bad outcomes in critically ill children. Pediatr Emerg Care. 2016:1.  https://doi.org/10.1097/PEC.0000000000000784.
  16. 16.
    Levy-Shraga Y, et al. Critical illness-related corticosteroid insufficiency in children. Horm Res Paediatr. 2013;80(5):309–17.PubMedCrossRefGoogle Scholar
  17. 17.
    Annane D, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288(7):862–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Sprung CL, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.PubMedCrossRefGoogle Scholar
  19. 19.
    Keh D, et al. Effect of hydrocortisone on development of shock among patients with severe sepsis: the HYPRESS randomized clinical trial. JAMA. 2016;316(17):1775–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Roquilly A, et al. Hydrocortisone therapy for patients with multiple trauma: the randomized controlled HYPOLYTE study. JAMA. 2011;305(12):1201–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Johnson PJ. Hydrocortisone for treatment of hypotension in the newborn. Neonatal Netw. 2015;34(1):46–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Ibrahim H, et al. Corticosteroids for treating hypotension in preterm infants. Cochrane Database Syst Rev. 2011(12) online.Google Scholar
  23. 23.
    den Brinker M, et al. One single dose of etomidate negatively influences adrenocortical performance for at least 24h in children with meningococcal sepsis. Intensive Care Med. 2008;34(1):163–8.CrossRefGoogle Scholar
  24. 24.
    Basciani RM, et al. Anaesthetic induction with etomidate in cardiac surgery: a randomised controlled trial. Eur J Anaesthesiol. 2016;33(6):417–24.PubMedCrossRefGoogle Scholar
  25. 25.
    Du Y, et al. The effects of sing-dose etomidate versus propofol on cortisol levels in pediatric patients undergoing urologic surgery: a randomized controlled trial. Anesth Analg. 2015;121(6):1580–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Bruder EA, et al. Single induction dose of etomidate versus other induction agents for endotracheal intubation in critical ill patients. Cochrane Database Syst Rev. 2015;8(1).Google Scholar
  27. 27.
    Peeters B, et al. Drug-induced HPA axis alterations during acute critical illness: a multivariable association study. Clin Endocrinol. 2017;86(1):26–36.CrossRefGoogle Scholar
  28. 28.
    Gu H, et al. Combined use of etomidate and dexmedetomidine produces an additive effect in inhibiting the secretion of human adrenocortical hormones. Med Sci Monit. 2015;16(21):3528–35.CrossRefGoogle Scholar
  29. 29.
    Rothwell PM, Lawler PG. Prediction of outcome in intensive care patients using endocrine parameters. Crit Care Med. 1995;23(1):78–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Chopra IJ, et al. Evidence for an inhibitor of extrathyroidal conversion of thyroxine to 3,5,3′-triiodothyronine in sera of patients with nonthyroidal illnesses. J Clin Endocrinol Metab. 1985;60(4):666–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Kaptein EM, et al. Thyroxine metabolism in the low thyroxine state of critical nonthyroidal illnesses. J Clin Endocrinol Metab. 1981;53(4):764–71.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Vos RA, et al. Impaired thyroxine and 3,5,3′-triiodothyronine handling by rat hepatocytes in the presence of serum of patients with nonthyroidal illness. J Clin Endocrinol Metab. 1995;80(8):2364–70.PubMedGoogle Scholar
  33. 33.
    Adler SM, Wartofsky L. The nonthyroidal illness syndrome. Endocrinol Metab Clin N Am. 2007;36:657–72.CrossRefGoogle Scholar
  34. 34.
    Peeters RP, et al. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab. 2003;88(7):3202–11.CrossRefPubMedGoogle Scholar
  35. 35.
    Casaer MP, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–17.PubMedCrossRefGoogle Scholar
  36. 36.
    Fivez T, et al. Early versus late parenteral nutrition in critically ill children. N Engl J Med. 2016;374(12):1111–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Langouche L, et al. Impact of early nutrient restriction during critical illness on the nonthyroidal illness syndrome and its relation with outcome a randomized, controlled clinical study. J Clin Endocrinol Metab. 2013;98(3):1006–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Bacci V, Schussler GC, Kaplan TB. The relationship between serum triiodothyronine and thyrotropin during systemic illness. J Clin Endocrinol Metab. 1982;54(6):1229–35.PubMedCrossRefGoogle Scholar
  39. 39.
    Van den Berghe G, et al. Thyrotropin and prolactin release in prolonged critical illness: dynamics of spontaneous secretion and effects of growth hormone-secretagogues. Clin Endocrinol. 1997;47(5):599–612.CrossRefGoogle Scholar
  40. 40.
    Van den Berghe G, et al. Neuroendocrinology of prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone secretagogues. J Clin Endocrinol Metab. 1998;83(2):309–19.PubMedGoogle Scholar
  41. 41.
    Murkin JM. Anesthesia and hypothyroidism: a review of thyroxine physiology, pharmacology, and anesthetic implications. Anesth Analg. 1982;61(4):371–83.PubMedCrossRefGoogle Scholar
  42. 42.
    Zwillich CW, Pierson DJ, Hofeldt FD, et al. Ventilatory control in myxedema and hypothyroidism. N Engl J Med. 1975;292:662.PubMedCrossRefGoogle Scholar
  43. 43.
    Siafakas NM, Salesiotou V, Filaditaki V, et al. Respiratory muscle strength in hypothyroidism. Chest. 1992;102:189.PubMedCrossRefGoogle Scholar
  44. 44.
    Wilson WR, Bedell GN. The pulmonary abnormalities in myxedema. J Clin Invest. 1960;39:42.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Stathatos N, Wartofsky L. Perioperative management of patients with hypothyroidism. Endocrinol Metab Clin N Am. 2003;32:503.CrossRefGoogle Scholar
  46. 46.
    Chopra IJ. Simultaneous measurement of free thyroxine and free 3,5,3′-triiodothyronine in undiluted serum by direct equilibrium dialysis/radioimmunoassay: evidence that free triiodothyronine and free thyroxine are normal in many patients with the low triiodothyronine syndrome. Thyroid. 1998;8(3):249–57.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Burmeister LA. Reverse T3 does not reliably differentiate hypothyroid sick syndrome from euthyroid sick syndrome. Thyroid. 1995;5(6):435–41.PubMedCrossRefGoogle Scholar
  48. 48.
    Surks MI, Sievert R. Drugs and thyroid function. N Engl J Med. 1995;333(25):1688–94.PubMedCrossRefGoogle Scholar
  49. 49.
    Becker RA, et al. Hypermetabolic low triiodothyronine syndrome of burn injury. Crit Care Med. 1982;10(12):870–5.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Brent GA, Hershman JM. Thyroxine therapy in patients with severe nonthyroidal illnesses and low serum thyroxine concentration. J Clin Endocrinol Metab. 1986;63(1):1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Novitzky D. Heart transplantation, euthyroid sick syndrome, and triiodothyronine replacement. J Heart Lung Transplant. 1992;11(4 Pt 2):S196–8.PubMedGoogle Scholar
  52. 52.
    Bennett-Guerrero E, et al. Cardiovascular effects of intravenous triiodothyronine in patients undergoing coronary artery bypass graft surgery. A randomized, double-blind, placebo- controlled trial. Duke T3 study group. JAMA. 1996;275(9):687–92.PubMedCrossRefGoogle Scholar
  53. 53.
    Klemperer JD, et al. Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med. 1995;333(23):1522–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Bettendorf M, et al. Tri-iodothyronine treatment in children after cardiac surgery: a double-blind, randomised, placebo-controlled study. Lancet. 2000;356(9229):529–34.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Chowdhury D, et al. A prospective randomized clinical study of thyroid hormone treatment after operations for complex congenital heart disease. J Thorac Cardiovasc Surg. 2001;122(5):1023–5.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Mackie AS, et al. A randomized, double-blind, placebo-controlled pilot trial of triiodothyronine in neonatal heart surgery. J Thorac Cardiovasc Surg. 2005;130(3):810–6.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Portman MA, et al. Triiodothyronine supplementation in infants and children undergoing cardiopulmonary bypass (TRICC): a multicenter placebo-controlled randomized trial: age analysis. Circulation. 2010;122(11 Suppl):S224–33.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hays MT, Nielsen KR. Human thyroxine absorption: age effects and methodological analyses. Thyroid. 1994;4(1):55–64.PubMedCrossRefGoogle Scholar
  59. 59.
    Jonklaas J, et al. Guidelines for the treatment of hypothyroidism. Thyroid. 2014;24(12):1670–751.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wartofsky L. In: Braverman LE, editor. The thyroid: a fundamental and clinical text, U.R. Philadelphia: Lippincott-Raven; 1995. p. 871–7.Google Scholar
  61. 61.
    Ross R, et al. Critically ill patients have high basal growth hormone levels with attenuated oscillatory activity associated with low levels of insulin- like growth factor-I. Clin Endocrinol. 1991;35(1):47–54.CrossRefGoogle Scholar
  62. 62.
    Maiter D, et al. Differential regulation by growth hormone (GH) of insulin-like growth factor I and GH receptor/binding protein gene expression in rat liver. Endocrinology. 1992;130(6):3257–64.PubMedCrossRefGoogle Scholar
  63. 63.
    Van den Berghe G, et al. The somatotropic axis in critical illness: effect of continuous growth hormone (GH)-releasing hormone and GH-releasing peptide-2 infusion. J Clin Endocrinol Metab. 1997;82(2):590–9.PubMedGoogle Scholar
  64. 64.
    Giustina A, Wehrenberg WB. Influence of thyroid hormones on the regulation of growth hormone secretion. Eur J Endocrinol. 1995;133(6):646–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Valcavi R, Zini M, Portioli I. Thyroid hormones and growth hormone secretion. J Endocrinol Investig. 1992;15(4):313–30.CrossRefGoogle Scholar
  66. 66.
    Wajchenberg BL, et al. Growth hormone axis in cushing's syndrome. Horm Res. 1996;45(1–2):99–107.PubMedCrossRefGoogle Scholar
  67. 67.
    Dieguez C, et al. Role of glucocorticoids in the neuroregulation of growth hormone secretion. J Pediatr Endocrinol Metab. 1996;9(Suppl 3):255–60.PubMedGoogle Scholar
  68. 68.
    Casanueva FF. Physiology of growth hormone secretion and action. Endocrinol Metab Clin N Am. 1992;21(3):483–517.Google Scholar
  69. 69.
    Strobl JS, Thomas MJ. Human growth hormone. Pharmacol Rev. 1994;46(1):1–34.PubMedGoogle Scholar
  70. 70.
    Van den Berghe G, de Zegher F, Lauwers P. Dopamine suppresses pituitary function in infants and children. Crit Care Med. 1994;22(11):1747–53.PubMedCrossRefGoogle Scholar
  71. 71.
    Van den Berghe G, de Zegher F. Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med. 1996;24(9):1580–90.PubMedCrossRefGoogle Scholar
  72. 72.
    Takala J, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999;341(11):785–92.PubMedCrossRefGoogle Scholar
  73. 73.
    van Steenbergen W, et al. Suppression of gonadotropin secretion in the hospitalized postmenopausal female as an effect of acute critical illness. Neuroendocrinology. 1994;60(2):165–72.PubMedCrossRefGoogle Scholar
  74. 74.
    Spratt DI, et al. Reproductive axis suppression in acute illness is related to disease severity. J Clin Endocrinol Metab. 1993;76(6):1548–54.PubMedGoogle Scholar
  75. 75.
    Woolf PD, et al. Transient hypogonadotropic hypogonadism caused by critical illness. J Clin Endocrinol Metab. 1985;60(3):444–50.PubMedCrossRefGoogle Scholar
  76. 76.
    Vogel AV, Peake GT, Rada RT. Pituitary-testicular axis dysfunction in burned men. J Clin Endocrinol Metab. 1985;60(4):658–65.PubMedCrossRefGoogle Scholar
  77. 77.
    Van den Berghe G. Five-Day Pulsatile Gonadotropin-Releasing Hormone Administration Unveils Combined Hypothalamic-Pituitary-Gonadal Defects Underlying Profound Hypoandrogenism in Men with Prolonged Critical Illness. J Clin Endocrinol Metab. 2001;86(7):3217–26.PubMedGoogle Scholar
  78. 78.
    Heckmann M, et al. Major cardiac surgery induces an increase in sex steroids in prepubertal children. Steroids. 2014;81:57–63.PubMedCrossRefGoogle Scholar
  79. 79.
    Jaksic T, et al. Proline metabolism in adult male burned patients and healthy control subjects. Am J Clin Nutr. 1991;54(2):408–13.PubMedCrossRefGoogle Scholar
  80. 80.
    Cuthbertson DP. Further observations on the disturbance of metabolism caused by injury, with particular reference to the dietary requirements of fracture cases. Br J Surg. 1936;23:505–20.CrossRefGoogle Scholar
  81. 81.
    Moyer E, et al. Multiple systems organ failure: VI. Death predictors in the trauma- septic state – the most critical determinants. J Trauma. 1981;21(10):862–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Shew SB, et al. The determinants of protein catabolism in neonates on extracorporeal membrane oxygenation. J Pediatr Surg. 1999;34(7):1086–90.PubMedCrossRefGoogle Scholar
  83. 83.
    Przkora R, et al. Body composition changes with time in pediatric burn patients. J Trauma. 2006;60(5):968–71; discussion 971.PubMedCrossRefGoogle Scholar
  84. 84.
    Cuthbertson DP, Shaw GB, Young FG. The anterior pituitary gland and protein metabolism: the nitrogen retaining action of anterior lobe extracts. J Clin Endocrinol Metab. 1941;2:459–67.Google Scholar
  85. 85.
    Voerman BJ, et al. Effects of human growth hormone in critically ill nonseptic patients: results from a prospective, randomized, placebo-controlled trial. Crit Care Med. 1995;23(4):665–73.PubMedCrossRefGoogle Scholar
  86. 86.
    Petersen SR, Holaday NJ, Jeevanandam M. Enhancement of protein synthesis efficiency in parenterally fed trauma victims by adjuvant recombinant human growth hormone. J Trauma. 1994;36(5):726–33.PubMedCrossRefGoogle Scholar
  87. 87.
    Dahn MS, Lange MP. Systemic and splanchnic metabolic response to exogenous human growth hormone. Surgery. 1998;123(5):528–38.PubMedCrossRefGoogle Scholar
  88. 88.
    Gamrin L, et al. Protein-sparing effect in skeletal muscle of growth hormone treatment in critically ill patients. Ann Surg. 2000;231(4):577–86.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Hart DW, et al. Attenuation of posttraumatic muscle catabolism and osteopenia by long-term growth hormone therapy. Ann Surg. 2001;233(6):827–34.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Genetech Nutropin AQ package Insert. 1999.Google Scholar
  91. 91.
    Turkalj I, et al. Effect of increasing doses of recombinant human insulin-like growth factor-I on glucose, lipid, and leucine metabolism in man. J Clin Endocrinol Metab. 1992;75(5):1186–91.PubMedGoogle Scholar
  92. 92.
    Berneis K, et al. Effects of insulin-like growth factor I combined with growth hormone on glucocorticoid-induced whole-body protein catabolism in man. J Clin Endocrinol Metab. 1997;82(8):2528–34.PubMedGoogle Scholar
  93. 93.
    Cioffi WG, et al. Insulin-like growth factor-1 lowers protein oxidation in patients with thermal injury. Ann Surg. 1994;220(3):310–6; discussion 316–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Leinskold T, et al. Effect of postoperative insulin-like growth factor I supplementation on protein metabolism in humans. Br J Surg. 1995;82(7):921–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Sandstrom R, et al. The effect of recombinant human IGF-I on protein metabolism in post-operative patients without nutrition compared to effects in experimental animals. Eur J Clin Investig. 1995;25(10):784–92.CrossRefGoogle Scholar
  96. 96.
    Goeters C, et al. Repeated administration of recombinant human insulin-like growth factor-I in patients after gastric surgery. Effect on metabolic and hormonal patterns. Ann Surg. 1995;222(5):646–53.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Herndon DN, et al. Muscle protein catabolism after severe burn: effects of IGF-1/IGFBP-3 treatment. Ann Surg. 1999;229(5):713–20; discussion 720–2.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yarwood GD, et al. Administration of human recombinant insulin-like growth factor-I in critically ill patients. Crit Care Med. 1997;25(8):1352–61.PubMedCrossRefGoogle Scholar
  99. 99.
    Hausmann DF, et al. Anabolic steroids in polytrauma patients. Influence on renal nitrogen and amino acid losses: a double-blind study. JPEN J Parenter Enteral Nutr. 1990;14(2):111–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Gervasio JM, et al. Oxandrolone in trauma patients. Pharmacotherapy. 2000;20(11):1328–34.PubMedCrossRefGoogle Scholar
  101. 101.
    Demling RH, Orgill DP. The anticatabolic and wound healing effects of the testosterone analog oxandrolone after severe burn injury. J Crit Care. 2000;15(1):12–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Wolf SE, et al. Effects of oxandrolone on outcome measures in the severely burned: a multicenter prospective randomized double-blind trial. J Burn Care Res. 2006;27(2):131–9; discussion 140–1.PubMedCrossRefGoogle Scholar
  103. 103.
    Jeschke MG, et al. The effect of oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn. Ann Surg. 2007;246(3):351–60; discussion 360–2.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Porro L, et al. Five-year outcomes after oxandrolone administration in severely burned children: a randomized clinical trial of safety and efficacy. J Am Coll Surg. 2012;214(4):489–502.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Denne SC, et al. Proteolysis in skeletal muscle and whole body in response to euglycemic hyperinsulinemia in normal adults. Am J Phys. 1991;261(6 Pt 1):E809–14.Google Scholar
  106. 106.
    Fukagawa NK, et al. Insulin-mediated reduction of whole body protein breakdown. Dose-response effects on leucine metabolism in postabsorptive men. J Clin Invest. 1985;76(6):2306–11.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Heslin MJ, et al. Effect of hyperinsulinemia on whole body and skeletal muscle leucine carbon kinetics in humans [published erratum appears in Am J Physiol 1993 Jul;265(1 Pt 1):section E following table of contents]. Am J Phys. 1992;262(6 Pt 1):E911–8.Google Scholar
  108. 108.
    Tessari P, et al. Dose-response curves of effects of insulin on leucine kinetics in humans. Am J Phys. 1986;251(3 Pt 1):E334–42.Google Scholar
  109. 109.
    Ferrando AA, et al. A submaximal dose of insulin promotes net skeletal muscle protein synthesis in patients with severe burns [see comments]. Ann Surg. 1999;229(1):11–8.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Pierre EJ, et al. Effects of insulin on wound healing. J Trauma. 1998;44(2):342–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Sakurai Y, et al. Stimulation of muscle protein synthesis by long-term insulin infusion in severely burned patients. Ann Surg. 1995;222(3):283–94; 294–7PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Poindexter BB, Karn CA, Denne SC. Exogenous insulin reduces proteolysis and protein synthesis in extremely low birth weight infants. J Pediatr. 1998;132(6):948–53.PubMedCrossRefGoogle Scholar
  113. 113.
    Agus M, et al. The effect of insulin infusion upon protein metabolism in neonates on extracorporeal life support. Ann Surg. 2006;244(4):536–44.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Moghissi ES, et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care. 2009;32(6):1119–31.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Branco RG, et al. Glucose level and risk of mortality in pediatric septic shock. Pediatr Crit Care Med. 2005;6(4):470–2.PubMedCrossRefGoogle Scholar
  116. 116.
    Faustino EV, Apkon M. Persistent hyperglycemia in critically ill children. J Pediatr. 2005;146(1):30–4.PubMedCrossRefGoogle Scholar
  117. 117.
    Wintergerst KA, et al. Association of hypoglycemia, hyperglycemia, and glucose variability with morbidity and death in the pediatric intensive care unit. Pediatrics. 2006;118(1):173–9.PubMedCrossRefGoogle Scholar
  118. 118.
    van den Berghe G, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345(19):1359–67.PubMedCrossRefGoogle Scholar
  119. 119.
    Malmberg K, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year [see comments]. J Am Coll Cardiol. 1995;26(1):57–65.PubMedCrossRefGoogle Scholar
  120. 120.
    Annane D, et al. Corticosteroid treatment and intensive insulin therapy for septic shock in adults: a randomized controlled trial. JAMA. 2010;303(4):341–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Arabi YM, et al. Intensive versus conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. Crit Care Med. 2008;36(12):3190–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Brunkhorst FM, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.PubMedCrossRefGoogle Scholar
  123. 123.
    Preiser JC, et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009;35(10):1738–48.PubMedCrossRefGoogle Scholar
  124. 124.
    Van den Berghe G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449–61.PubMedCrossRefGoogle Scholar
  125. 125.
    Wiener RS, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA. 2008;300(8):933–44.PubMedCrossRefGoogle Scholar
  126. 126.
    Finfer S, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.PubMedCrossRefGoogle Scholar
  127. 127.
    Vlasselaers D, et al. Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. Lancet. 2009;373(9663):547–56.PubMedCrossRefGoogle Scholar
  128. 128.
    Macrae D, et al. A randomized trial of hyperglycemic control in pediatric intensive care. N Engl J Med. 2014;370(2):107–18.PubMedCrossRefGoogle Scholar
  129. 129.
    Finfer S, et al. Intensive versus conventional glucose control in critically ill patients with traumatic brain injury: long-term follow-up of a subgroup of patients from the NICE-SUGAR study. Intensive Care Med. 2015;41(6):1037–47.PubMedCrossRefGoogle Scholar
  130. 130.
    Krinsley JS, Grover A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med. 2007;35(10):2262–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Ulate KP, et al. Strict glycemic targets need not be so strict: a more permissive glycemic range for critically ill children. Pediatrics. 2008;122(4):e898–904.PubMedCrossRefGoogle Scholar
  132. 132.
    de Zegher F, et al. Clinical review 89: small as fetus and short as child: from endogenous to exogenous growth hormone. J Clin Endocrinol Metab. 1997;82(7):2021–6.PubMedGoogle Scholar
  133. 133.
    Van den Berghe G, et al. The combined administration of GH-releasing peptide-2 (GHRP-2), TRH and GnRH to men with prolonged critical illness evokes superior endocrine and metabolic effects compared to treatment with GHRP-2 alone. Clin Endocrinol. 2002;56(5):655–69.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Katherine Ratzan Peeler
    • 1
    • 2
  • Michael S. D. Agus
    • 3
    • 4
    • 5
  1. 1.Harvard Medical SchoolBostonUSA
  2. 2.Division of Medicine Critical Care, Department of Medicine, Boston Children’s HospitalBostonUSA
  3. 3.Harvard Medical SchoolBostonUSA
  4. 4.Division of Medicine Critical Care, Department of Medicine, Boston Children’s HospitalBostonUSA
  5. 5.Division of Endocrinology, Department of Medicine, Boston Children’s HospitalBostonUSA

Personalised recommendations