Delayed Puberty and Hypogonadism

  • Stephanie A. Roberts
  • Diane E. J. Stafford


Delayed puberty is defined as the absence of any sign of puberty in a child at a chronologic age 2 standard deviations above the mean age of pubertal development for a given population. Following a period of quiescence in childhood, normal puberty is initiated by the release of tonic inhibition of pulsatile secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus leading to increased GnRH secretion. These pulses cause secretion of luteinizing hormone (LH) and follicular-stimulating hormone (FSH) from the pituitary gland. These pituitary gonadotropins then circulate to the gonads and stimulate production of sex steroids. The differential diagnosis of pubertal delay is extensive but can most easily be divided into four categories. The first group represents a variant of normal puberty timing termed constitutional delay of growth and puberty. Functional disorders, such as chronic illness, can cause a temporary suppression of the axis. Finally, more permanent causes include hypogonadotropic hypogonadism, in which hypothalamic or pituitary failure results in deficiency of circulating gonadotropins, and hypergonadotropic hypogonadism which results from primary gonadal failure, with subsequent lack of negative feedback of sex steroids at the hypothalamic and pituitary levels resulting in elevated serum gonadotropin levels. Sex hormone replacement with testosterone and estrogen and progesterone in boys and girls, respectively, remains the first-line treatment in hypogonadism.


Delayed puberty Gonadotropin-releasing hormone (GnRH) Luteinizing hormone (LH) Follicular-stimulating hormone (FSH) Constitutional delay of growth and puberty Hypogonadotropic hypogonadism Kallmann syndrome Hypergonadotropic hypogonadism Testosterone therapy Estrogen therapy 


  1. 1.
    Livadas S, Chrousos GP. Control of the onset of puberty. Curr Opin Pediatr. 2016;28(4):551–8.CrossRefGoogle Scholar
  2. 2.
    Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in girls. Am J Dis Child. 1969;44:291–301.CrossRefGoogle Scholar
  3. 3.
    Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Am J Dis Child. 1970;45:13–21.CrossRefGoogle Scholar
  4. 4.
    Argente J. Diagnosis of late puberty. Horm Res. 1999;51(Suppl 3):95–100.PubMedGoogle Scholar
  5. 5.
    Harrington J, Palmert MR. Clinical review: distinguishing constitutional delay of growth and puberty from isolated hypogonadotropic hypogonadism: critical appraisal of available diagnostic testes. J Clin Endocrinol Metab. 2012;97(9):3056–67.CrossRefGoogle Scholar
  6. 6.
    Sedelmeyer I, Palmert MR. Delayed puberty: analysis of a large case series from an academic center. J Clin Endocrinol Metab. 2002;87(4):1613–20.CrossRefGoogle Scholar
  7. 7.
    Rosenfield RL. Clinical Review 6: diagnosis and management of delayed puberty. J Clin Endocrinol Metab. 1990;70(3):559–62.CrossRefGoogle Scholar
  8. 8.
    Soliman AT, De Sanctis V. An approach to constitutional delay of growth and puberty. Indian J Endocrinol Metab. 2012;16(5):698–705.CrossRefGoogle Scholar
  9. 9.
    Zhu J, Chan YM. Fertility issues for patients with hypogonadotropic causes of delayed puberty. Endocrinol Metab Clin N Am. 2015;44(4):821–34.CrossRefGoogle Scholar
  10. 10.
    Warren PW. Effects of undernutrition on reproductive function in the human. Endocr Rev. 1983;4:363–77.CrossRefGoogle Scholar
  11. 11.
    Warren MP, Van de Wiele RL. Clinical and metabolic features of anorexia nervosa. Am J Obstet Gynecol. 1973;117:435–49.CrossRefGoogle Scholar
  12. 12.
    Hudson JL, Hudson MS. Endocrine dysfunction in anorexia nervosa and bulimia: comparison with abnormalities in other psychiatric disorders and disturbances due to metabolic factors. Psychiatr Dev. 1984;2(4):237–72.PubMedGoogle Scholar
  13. 13.
    Weimann E, Witzel C, Schwidergall S, Bohles HJ. Prepubertal perturbations in elite gymnasts caused by sport specific training regimens and inadequate nutritional intake. Int J Sports Med. 2000;21(3):210–5.CrossRefGoogle Scholar
  14. 14.
    Warren MP, Stiehl AL. Exercise and female adolescents: effects on the reproductive and skeletal systems. J Am Med Womens Assoc. 1999;54(3):115–20.Google Scholar
  15. 15.
    Nieschlag E, Vorona E. Mechanisms in endocrinology: medical consequences of doping with anabolic androgenic steroids: effects on reproductive functions. Eur J Endocrinol. 2015;173(2):R47–58.CrossRefGoogle Scholar
  16. 16.
    Harclerode J. Endocrine effects of marijuana in the male: preclinical studies. NIDA Res Monogr. 1984;44:46–64.PubMedGoogle Scholar
  17. 17.
    Prozialeck WC, Jivan JK, Anurkar SV. Pharmacology of kratom: an emerging botanical agent with stimulant, analgesic and opioid-like effects. J Am Osteopath Assoc. 2012;112(12):792–9.PubMedGoogle Scholar
  18. 18.
    Chan Y, de Guillebon A, Lang-Muritano M, Plummer L, Cerrato F, Tsiaris S, Gaspert A, Lavoie HB, Wu C-H, Crowley WF Jr, Amory JK, Pitteloud N, Seminara S. GNRH1 mutations in patients with idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci U S A. 2009;106(28):11703–8.CrossRefGoogle Scholar
  19. 19.
    Herbison A. Genetics of puberty. Horm Res. 2007;68(Suppl 5):75–9.PubMedGoogle Scholar
  20. 20.
    Pallais JC, Au M, Pitteloud N, Seminara S, Crowley W Jr. Isolated gonadotropin-releasing hormone (GnRH) deficiency overview. In: Pagon RA, Bird TD, Dolan CR, Stephens K, editors. GeneReviews [Internet]. Seattle: University of Washington; 1993–2007. May 23 [updated 2010 Oct 14].Google Scholar
  21. 21.
    Dwyer AA, Hayes FJ, Plummer L, Pitteloud N, Crowley WF Jr. The long-term clinical follow-up and natural history of men with adult-onset idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 2010;95(9):4235–43.CrossRefGoogle Scholar
  22. 22.
    Boehm U, Bouloux PM, Dattani MT, de Roux N, Dode C, Dunkel L, et al. Expert consensus document: European consensus statement on congenital hypogonadotropic hypogonadism – pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2015;11(9):547–64.CrossRefGoogle Scholar
  23. 23.
    Vezzoli V, Duminuco P, Bassi I, Guizzardi F, Persani L, Bonomi M. The complex genetic basis of congenital hypogonadotropic hypogonadism. Minerva Endocrinol. 2016;41(2):223–39.PubMedGoogle Scholar
  24. 24.
    Layman LC. The molecular basis of human hypogonadotropic hypogonadism. Mol Genet Metab. 1999;68:191–9.CrossRefGoogle Scholar
  25. 25.
    Valdes-Socin H, Rubio Almanza M, Tome Fernandez-Ladreda M, Debray FG, Bours V, Beckers A. Reproduction, smell and neurodevelopmental disorders: genetic defects in different hypogonadotropic hypogonadal syndromes. Front Endocrinol (Lausanne). 2014;5:109.Google Scholar
  26. 26.
    Silveria L, Trarback E, Latronico AC. Genetic basis for GnRH-dependent pubertal disorders in humans. Mol Cell Endocrinol. 2010;324:30–8.CrossRefGoogle Scholar
  27. 27.
    Beate K, Joseph N, Nicholas de R, Wolfram K. Genetics of isolated hypogonadotropic hypogonadism: role of GnRH receptor and other genes. Int J Endocrinol. 2012;2012:1.CrossRefGoogle Scholar
  28. 28.
    Topaloglu AK, Kotan DL. Genetics of hypogonadotropic hypogonadism. Endocr Dev. 2016;29:36–49.CrossRefGoogle Scholar
  29. 29.
    Dubern B, Clement K. Leptin and leptin receptor-related monogenic obesity. Biochimie. 2012;94(10):2111–5.CrossRefGoogle Scholar
  30. 30.
    Stijnen P, Ramos-Molina B, O’Rahilly S, Creemers JW. PCSK1 mutations and human endocrinopathies: from obesity to gastrointestinal disorders. Endocr Rev. 2016;37(4):347–71.CrossRefGoogle Scholar
  31. 31.
    Cogan JD, Wu W, Phillips JAI, Arnhold IJP, Agapito A, Fofanova OV, Osorio MGF, Bircan I, Moreno A, Mendonca BB. The PROP1 2-base pair deletion is a common cause of combined pituitary hormone deficiency. J Clin Endocrinol Metab. 1998;83:3346–9.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Wu W, Cogan JD, Pfaffle RW, Dasen JS, Frisch H, O’Connell SM, Flynn SE, Brown MR, Mullis PE, Parks JS, Phillips JA III, Rosenfeld MG. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat Genet. 1998;18:147–9.CrossRefGoogle Scholar
  33. 33.
    Kelberman D, Dattani MT. Role of transcription factors in midline central nervous system and pituitary defects. Endocr Dev. 2009;14:67–82.CrossRefGoogle Scholar
  34. 34.
    Niakan LL, McCabe ER. DAX-1 origin, function and novel role. Mol Genet Metab. 2005;86(1–2):70–83.CrossRefGoogle Scholar
  35. 35.
    Merke DP, Tajima T, Baron J, Cutler GB. Hypogonadotropic hypogonadism in a female caused by an X-linked recessive mutation in the DAX1 gene. N Engl J Med. 1999;340:1248–52.CrossRefGoogle Scholar
  36. 36.
    Weiss J, Axelrod L, Whitcomb RW, Harris PE, Crowley W Jr, Jameson JL. Hypogonadism caused by a single amino acid substitution in the β subunit of luteinizing hormone. N Engl J Med. 1992;326:179–83.CrossRefGoogle Scholar
  37. 37.
    Lofrano-Porto A, Barra GB, Giacomini LA, Nascimento PP, Latronico AC, Casulari LA, et al. Luteinizing hormone beta mutations and hypogonadism in men and women. N Engl J Med. 2007;357(9):897–904.CrossRefGoogle Scholar
  38. 38.
    Matthews CH, Borgato S, Beck-Peccoz P, Adams M, Tone Y, Gambin G, Casagrande S, Tedeschini G, Benedetti A, Chaterjee VKK. Primary amenorrhea and infertility due to mutation in the β-subunit of follicle-stimulating hormone. Nat Genet. 1993;5:83–6.CrossRefGoogle Scholar
  39. 39.
    Layman LC, Lee EJ, Peak DB, Namnoum AB, KK V, van Lingen BL, Gray MR, McDonough PG, Reindollar RH, Jameson JL. Delayed puberty and hypogonadism caused by a mutation in the follicle stimulating hormone beta-subunit gene. N Engl J Med. 1997;337:607–11.CrossRefGoogle Scholar
  40. 40.
    Siegel ET, Kim H-G, Nishimoto KH, Layman LC. The molecular basis of impaired follicle-stimulating hormone action: evidence from human mutations and mouse models. Reprod Sci. 2013;20(3):211–33.CrossRefGoogle Scholar
  41. 41.
    Dauber A, Hirschhorn JN, Picker J, Maher TA, Milunsky A. Delayed puberty due to a novel mutation in CHD7 causing CHARGE. Pediatrics. 2010;126(6):e1594–8.CrossRefGoogle Scholar
  42. 42.
    Rappaport R, Brauner R. Growth and endocrine disorders secondary to cranial irradiation. Pediatr Res. 1989;25(6):561–7.CrossRefGoogle Scholar
  43. 43.
    Smyth CM, Bremner WJ. Klinefelter syndrome. Arch Intern Med. 1998;158(12):1309–14.CrossRefGoogle Scholar
  44. 44.
    Chang S, Skakkebaek A, Gravholt CH. Klinefelter syndrome and medical treatment: hypogonadism and beyond. Hormones (Athens). 2015;14(4):531–48.Google Scholar
  45. 45.
    Levitsky LL, Luria AH, Hayes FJ, Lin AE. Turner syndrome: update on biology and management across the life span. Curr Opin Endocrinol Diabetes Obes. 2015;22(1):65–72.CrossRefGoogle Scholar
  46. 46.
    Blagovidow N, Page DC, Huff DE, et al. Ullrich turner syndrome in a XY female fetus with deletion of the sex-determining portion of the Y chromosome. Am J Med Genet. 1989;34:159–62.CrossRefGoogle Scholar
  47. 47.
    Scherer G, Chempp W, Baccichetti C, et al. Duplication of an Xp segment that includes the ZFX locus causes sex inversion in man. Hum Genet. 1989;81:291–4.PubMedGoogle Scholar
  48. 48.
    Laue L, SM W, Kudo M, et al. A nonsense mutation of the human luteinizing hormone receptor gene in Leydig cell hypoplasia. Hum Mol Genet. 1995;4:1429–33.CrossRefGoogle Scholar
  49. 49.
    Kremer H, Kraaij R, Toledo SP, et al. Male pseudohermaphroditism due to a homozygous missense mutation of the luteinizing hormone receptor gene. Nat Genet. 1995;9:160–4.CrossRefGoogle Scholar
  50. 50.
    Latronico AC, Anasti J, Arnhold IJP, et al. Testicular and ovarian resistance to luteinizing hormone caused by inactivating mutations of the luteinizing hormone-receptor gene. N Engl J Med. 1996;334:507–12.CrossRefGoogle Scholar
  51. 51.
    Gromoll J, Eiholzer U, Nieschlag E, Simoni M. Male hypogonadism caused by homozygous deletion of exon 10 of the luteinizing hormone (LH) receptor: differential action of human chorionic gonadotropin and LH. J Clin Endocrinol Metab. 2000;85(6):2281–6.CrossRefGoogle Scholar
  52. 52.
    Aittomaki K, Herva R, Stenman U-H, Juntunen K, Ylostalo P, Hovatta O, de la Chapelle A. Clinical features of primary ovarian failure caused by a point mutation in the follicle-stimulating hormone receptor gene. J Clin Endocrinol Metab. 1996;81:3722–6.PubMedGoogle Scholar
  53. 53.
    Desai SS, Roy BS, Mahale SD. Mutations and polymorphisms in FSH receptor: functional implications in human reproduction. Reproduction. 2013;146:R235–48.CrossRefGoogle Scholar
  54. 54.
    Fujieda K, Okuhara K, Abe S, Tajima T, Mukai T, Nakae J. Molecular pathogenesis of lipoid adrenal hyperplasia and adrenal hypoplasia congenita. J Steroid Biochem Mol Biol. 2003;85(2–5):483–9.CrossRefGoogle Scholar
  55. 55.
    Rappaport R, Maguelone GF. Disorders of sexual differentiation. In: Bertrand J, Rappaport R, Sizonenko P, editors. Pediatric endocrinology: physiology, pathophysiology, and clinical aspects. 2nd ed. London: Williams and Wilkins; 1993.Google Scholar
  56. 56.
    New MI. Inborn errors of adrenal steroidogenesis. Mol Cell Endocrinol. 2003;211(1–2):75–83.CrossRefGoogle Scholar
  57. 57.
    Bulun SE. Aromatase and estrogen receptor α deficiency. Fertil Steril. 2014;101(2):323–9.CrossRefGoogle Scholar
  58. 58.
    Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med. 1994;331:1056–61.CrossRefGoogle Scholar
  59. 59.
    Quaynor SD, Stradtman EW, Kim H-K, Shen Y, Chorich LP, Schreihofer DA, Layman LC. Delayed puberty and estrogen resistance in a woman with estrogen receptor α variant. N Engl J Med. 2013;369:164–71.CrossRefGoogle Scholar
  60. 60.
    Brinkmann AO. Molecular basis of androgen insensitivity. Mol Cell Endocrinol. 2001;179(1–2):105–9.CrossRefGoogle Scholar
  61. 61.
    McPhaul MJ. Molecular defects of the androgen receptor. J Steroid Biochem Mol Biol. 1999;69(1–6):315–22.CrossRefGoogle Scholar
  62. 62.
    Evans BAJ, Hughes IA, Bevan CL, Patterson MN, Gregory JW. Phenotypic diversity in siblings with partial androgen insensitivity syndrome. Arch Dis Child. 1997;76:529–31.CrossRefGoogle Scholar
  63. 63.
    Hunter JD, Pierce SR, Calikoglu AS, Howell JO. Embryonic testicular regression syndrome presenting as primary amenorrhea: a case report and review of disorders of sexual development. J Pediatr Adolesc Gynecol. 2016;29(4):e59–62.CrossRefGoogle Scholar
  64. 64.
    Jamieson CR, van der Burgt I, Brady AF, van Reen M, Elsawi MM, Hol F, Jeffrey S, Patton MA, Mariman E. Mapping a gene for Noonan syndrome to the long arm of chromosome 12. Nat Genet. 1994;8:357–60.CrossRefGoogle Scholar
  65. 65.
    Romano AA, Allanson JE, Dahlgren J, Gelb BD, Hall B, Pierpont ME, Roberts AE, Robinson W, Takemoto CM, Noonan JA. Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics. 2010;126(4):746–59.CrossRefGoogle Scholar
  66. 66.
    Bramswig JH, Heimes U, Heiermann E, et al. The effects of different cumulative doses of chemotherapy on testicular function. Cancer. 1990;65:1298–302.CrossRefGoogle Scholar
  67. 67.
    Sanders JE. Growth and development after hematopoietic cell transplant in children. Bone Marrow Transplant. 2008;41(2):223–7.CrossRefGoogle Scholar
  68. 68.
    Bouali N, Hmida D, Mougou S, Bouligand J, Lakhal B, Dimessi S, et al. Analysis of FMR1 gene premutation and X chromosome cytogenetic abnormalities in 100 Tunisian patients presenting premature ovarian failure. Ann Endocrinol (Paris). 2015;76(6):671–8.CrossRefGoogle Scholar
  69. 69.
    Berry GT. Galactosemia and amenorrhea in the adolescent. Ann N Y Acad Sci. 2008;1135:112–7.CrossRefGoogle Scholar
  70. 70.
    Bayer L, Bayley N. Growth diagnosis. Chicago: University of Chicago Press; 1959.Google Scholar
  71. 71.
    Reynolds EL, Wines JV. Physical changes associated with adolescence in boys. Am J Dis Child. 1951;82:529–47.Google Scholar
  72. 72.
    Harlan W, Grillo G, Cornoni-Huntley J, Leaverton P. Sexual characteristics of boys 12 to 17 years of age: the U.S. Health Examination Survey. J Pediatr. 1979;95(2):293–7.CrossRefGoogle Scholar
  73. 73.
    Harlan W, Harlan E, Grillo G. Sexual characteristics of girls 12 to 17 years of age: the U.S. Health Examination Survey. J Pediatr. 1980;96(6):1074–8.CrossRefGoogle Scholar
  74. 74.
    FCW W, Brown DC, Butler GE, Stirling HF, Kelnar CJH. Early morning plasma testosterone is an accurate predictor of imminent pubertal development in prepubertal boys. J Clin Endocrinol Metab. 1990;70:26–31.Google Scholar
  75. 75.
    Harrington J, Palmert MR. Distinguishing constitutional delay of growth and puberty from isolated hypogonadotropic hypogonadism: critical appraisal of available diagnostic tests. J Clin Endocrinol Metab. 2012;97(9):3056–67.CrossRefGoogle Scholar
  76. 76.
    Palmert MR, Dunkel L. Delayed puberty. N Engl J Med. 2012;366(5):443–53.CrossRefGoogle Scholar
  77. 77.
    Von Kalckreuth G, Haverkamp F, Kessler M, et al. Constitutional delay of growth and puberty: do they really reach their target height? Horm Res. 1991;35(6):222–5.CrossRefGoogle Scholar
  78. 78.
    Arrigo T, Cisternino M, De Luca F, et al. Final height outcomes in both untreated and testosterone-treated boys with constitutional delay of growth and puberty. J Pediatr Endocrinol Metab. 1996;9(5):511–7.CrossRefGoogle Scholar
  79. 79.
    LaFranchi S, Hanna CE, Mandel SH. Constitutional delay of growth: expected versus final adult height. Pediatrics. 1991;97(1):82–7.Google Scholar
  80. 80.
    Crowne EC, Shalet SM, Wallace WH, et al. Final height in boys with untreated constitutional delay of growth and puberty. Arch Dis Child. 1990;65(10):1109–12.CrossRefGoogle Scholar
  81. 81.
    Crowne EC, Shalet SM, Wallace WH, et al. Final height in girls with untreated constitutional delay of growth and puberty. Eur J Pediatr. 1991;150(10):708–12.CrossRefGoogle Scholar
  82. 82.
    Zucchini S, Wasniewska M, Cisternino M, et al. Adult height in children with short stature and idiopathic delayed puberty after different management. Eur J Pediatr. 2008;167(6):677–81.CrossRefGoogle Scholar
  83. 83.
    Sidhoum VF, Chan YM, Lippincott MF, et al. Reversal and relapse of hypogonadotropic hypogonadism: resilience and fragility of the reproductive neuroendocrine system. J Clin Endocrinol Metab. 2014;99(3):861–70.CrossRefGoogle Scholar
  84. 84.
    Nahata L, Quinn GP, Tishelman A. A call for fertility and sexual function counseling in pediatrics. Pediatrics. 2016;137(6):e20160180.CrossRefGoogle Scholar
  85. 85.
    Nahata L, Cohen LE, Yu RN. Barriers to fertility preservation in male adolescents with cancer: it’s time for a multidisciplinary approach that includes urologists. Urology. 2012;79(6):1206–9.CrossRefGoogle Scholar
  86. 86.
    Wallace WHB, Kelsey TW, Anderson RA. Fertility preservation in pre-pubertal girls with cancer; the role of ovarian tissue cryopreservation. Fertil Steril. 2016;105(1):6–12.CrossRefGoogle Scholar
  87. 87.
    Oktay K, Bedoschi G, Berkowitz K, et al. Fertility preservation in women with Turner Syndrome; a comprehensive review and practical guidelines. J Pediar Adolesc Gynecol. 2016;29(5):409–16.CrossRefGoogle Scholar
  88. 88.
    Grynberg M, Bidet M, Bernard J, et al. Fertility preservation in turner syndrome. Fertil Steril. 2016;105(1):13–9.CrossRefGoogle Scholar
  89. 89.
    Franik S, Hoeijmakers Y, D’Hauwers K, et al. Klinefelter syndrome and fertility: sperm preservation should not be offered to children with Klinefelter syndrome. Hum Reprod. 2016;31(9):1952–9.CrossRefGoogle Scholar
  90. 90.
    Hoffman AR, Crowley WF. Induction of puberty in men by long-term pulsatile administration of low dose gonadotropin-releasing hormone. N Engl J Med. 1982;307:1237–41.CrossRefGoogle Scholar
  91. 91.
    Chan YM, Lippincott MF, Butler JP, Sidhoum VF, Li CX, Plummer L, et al. Exogenous kisspeptin administration as a probe of GnRH neuronal function in patients with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 2014;99(12):E2762–71.CrossRefGoogle Scholar
  92. 92.
    Gambineri A, Pasquali R. Testosterone therapy in men: clinical and pharmacological perspectives. J Endocrinol Investig. 2000;23:196–214.CrossRefGoogle Scholar
  93. 93.
    Brook CGD. Treatment of late puberty. Horm Res. 1999;51(suppl 3):101–3.PubMedGoogle Scholar
  94. 94.
    Richmond EJ, Rogol AD. Male pubertal development and the role of androgen therapy. Nat Clin Pract Endocrinol Metab. 2007;3:338–44.CrossRefGoogle Scholar
  95. 95.
    Bourguignon J-P. Delayed puberty and hypogonadism. In: Bertrand J, Rappaport R, Sizonenko P, editors. Pediatric endocrinology: physiology, pathophysiology, and clinical aspects. 2nd ed. London: Williams and Wilkins; 1993.Google Scholar
  96. 96.
    Pozo J, Argente J. Ascertainment and treatment of delayed puberty. Horm Res. 2003;60(suppl 3):35–48.PubMedGoogle Scholar
  97. 97.
    Mayo A, Macintyre H, Wallace AM, Ahmed SF. Transdermal testosterone application: pharmacokinetics and effects on pubertal status, short-term growth, and bone turnover. J Clin Endocrinol Metab. 2004;89(2):681–7.CrossRefGoogle Scholar
  98. 98.
    De Sanctis V, Vullo C, Urso L, Rigolin F, Cavallini A, Caramelli K, Daugherty C, Mazer N. Clinical experience using the Androderm testosterone transdermal system in hypogonadal adolescents and young men with beta-thalassemia major. J Pediatr Endocrinol Metab. 1998;11(Suppl 3):891–900.PubMedGoogle Scholar
  99. 99.
    Divasta AD, Gordon CM. Hormone replacement therapy and the adolescent. Curr Opin Obstet Gynecol. 2010;22:363–8.CrossRefGoogle Scholar
  100. 100.
    Rosenfield RL, DiMeglio LA, Mauras N, Ross J, Shaw ND, Greeley SA, et al. Commentary: launch of a quality improvement network for evidence-based management of uncommon pediatric endocrine disorders: turner syndrome as a prototype. J Clin Endocrinol Metab. 2015;100(4):1234–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of EndocrinologyBoston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations