Advertisement

Rickets: The Skeletal Disorders of Impaired Calcium or Phosphate Availability

  • Erik A. Imel
  • Thomas O. Carpenter
Chapter

Abstract

Rickets derives from the old English word “wrikken” meaning to twist or bend and refers to conditions of impaired mineralization of growing bones, ultimately resulting in their bowing and twisting. Rickets and osteomalacia refer to similar processes occurring in different compartments of the bone. Rickets is evident histologically and radiographically as a disorganized and expanded growth plate (physis) of the growing bone, together with the accompanying osteomalacia (accumulation of excess unmineralized osteoid matrix due to a delayed mineral apposition rate) of the trabecular and cortical bone. Children with untreated rickets may develop severe curvature deformities of the lower extremities, primarily due to the effect of weight bearing on an under-mineralized skeleton. This chapter will describe the pathophysiology and clinical diagnostic and treatment approach to rickets from a variety of calciopenic and phosphopenic causes.

Keywords

Bone Calcium Fibroblast growth factor 23 (FGF23) Hypophosphatemia Osteomalacia Parathyroid hormone (PTH) Mineral metabolism Nutritional deficiencies Phosphate Rickets Vitamin D 

References

  1. 1.
    Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17(2):225–42.CrossRefPubMedGoogle Scholar
  2. 2.
    Reid IR, Murphy WA, Hardy DC, Teitelbaum SL, Bergfeld MA, Whyte MP. X-linked hypophosphatemia: skeletal mass in adults assessed by histomorphometry, computed tomography, and absorptiometry. Am J Med. 1991;90(1):63–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Demay MB, Sabbagh Y, Carpenter TO. Calcium and vitamin D: what is known about the effects on growing bone. Pediatrics. 2007;119(Suppl 2):S141–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Mayne PD, Kovar IZ. Calcium and phosphorus metabolism in the premature infant. Ann Clin Biochem. 1991;28(Pt 2):131–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Buchacz K, Brooks JT, Tong T, Moorman AC, Baker RK, Holmberg SD, et al. Evaluation of hypophosphataemia in tenofovir disoproxil fumarate (TDF)-exposed and TDF-unexposed HIV-infected out-patients receiving highly active antiretroviral therapy. HIV Med. 2006;7(7):451–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Kreiter SR, Schwartz RP, Kirkman HN Jr, Charlton PA, Calikoglu AS, Davenport ML. Nutritional rickets in African American breast-fed infants. J Pediatr. 2000;137(2):153–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Thacher TD, Abrams SA. Relationship of calcium absorption with 25(OH)D and calcium intake in children with rickets. Nutr Rev. 2010;68(11):682–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Prentice A, Ceesay M, Nigdikar S, Allen SJ, Pettifor JM. FGF23 is elevated in Gambian children with rickets. Bone. 2008;42(4):788–97.PubMedCrossRefGoogle Scholar
  9. 9.
    Kitanaka S, Takeyama K, Murayama A, Kato S. The molecular basis of vitamin D-dependent rickets type I. Endocr J. 2001;48(4):427–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Glorieux FH, St-Arnaud R. Molecular cloning of (25-OH D)-1 alpha-hydroxylase: an approach to the understanding of vitamin D pseudo-deficiency. Recent Prog Horm Res. 1998;53:341–50.PubMedGoogle Scholar
  11. 11.
    Thacher TD, Levine MA. CYP2R1 mutations causing vitamin D-deficiency rickets. J Steroid Biochem Mol Biol. 2017;173:333–36.PubMedCrossRefGoogle Scholar
  12. 12.
    Al Mutair AN, Nasrat GH, Russell DW. Mutation of the CYP2R1 vitamin D 25-hydroxylase in a Saudi Arabian family with severe vitamin D deficiency. J Clin Endocrinol Metab. 2012;97(10):E2022–5.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Malloy PJ, Pike JW, Feldman D. The vitamin D receptor and the syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocr Rev. 1999;20(2):156–88.PubMedGoogle Scholar
  14. 14.
    Chen CH, Sakai Y, Demay MB. Targeting expression of the human vitamin D receptor to the keratinocytes of vitamin D receptor null mice prevents alopecia. Endocrinology. 2001;142(12):5386–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Econs MJ, Samsa GP, Monger M, Drezner MK, Feussner JR. X-linked hypophosphatemic rickets: a disease often unknown to affected patients. Bone Miner. 1994;24:17–24.PubMedCrossRefGoogle Scholar
  16. 16.
    Nehgme R, Fahey JT, Smith C, Carpenter TO. Cardiovascular abnormalities in patients with X-linked hypophosphatemia. J Clin Endocrinol Metab. 1997;82(8):2450–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Carpenter TO. New perspectives on the biology and treatment of X-linked hypophosphatemic rickets. Pediatr Clin N Am. 1997;44(2):443–66.CrossRefGoogle Scholar
  18. 18.
    Hyp Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet. 1995;11(2):130–6.CrossRefGoogle Scholar
  19. 19.
    Liu S, Guo R, Simpson LG, Xiao Z-S, Burnham CE, Quarles LD. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem. 2003;278(39):37419–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Kato K, Jeanneau C, Tarp MA, Benet-Pages A, Lorenz-Depiereux B, Bennett EP, et al. Polypeptide GaINAc-transferase T3 and familial tumoral calcinosis: secretion of FGF23 requires O-glycosylation. J Biol Chem. 2006;281(27):18370–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35.PubMedCrossRefGoogle Scholar
  23. 23.
    Saito H, Maeda A, Ohtomo S, Hirata M, Kusano K, Kato S, et al. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280(4):2543–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38(11):1310–5.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Levy-Litan V, Hershkovitz E, Avizov L, Leventhal N, Bercovich D, Chalifa-Caspi V, et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet. 2010;86(2):273–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet. 2010;86(2):267–72.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Hohne W, et al. Mutations in ENPP1 are associated with 'idiopathic' infantile arterial calcification. Nat Genet. 2003;34(4):379–81.PubMedCrossRefGoogle Scholar
  28. 28.
    Rafaelsen SH, Ræder H, Fagerheim AK, Knappskog P, Carpenter TO, Johansson S, et al. Exome sequencing reveals FAM20c mutations associated with FGF23-related hypophosphatemia, dental anomalies and ectopic calcification. J Bone Miner Res. 2013;28(6):1378–85.PubMedCrossRefGoogle Scholar
  29. 29.
    Tagliabracci VS, Engel JL, Wiley SE, Xiao J, Gonzalez DJ, Nidumanda Appaiah H, et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U S A. 2014;111(15):5520–5.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    ADHR_Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26(3):345–8.CrossRefGoogle Scholar
  31. 31.
    White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 2001;60(6):2079–86.PubMedCrossRefGoogle Scholar
  32. 32.
    Imel EA, Hui SL, Econs MJ. FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J Bone Miner Res. 2007;22(4):520–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Econs MJ, McEnery PT. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab. 1997;82(2):674–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci U S A. 2011;108(46):1146–55.CrossRefGoogle Scholar
  35. 35.
    Imel EA, Peacock M, Gray AK, Padgett LR, Hui SL, Econs MJ. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J Clin Endocrinol Metab. 2011;96(11):3541–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Imel EA, Gray A, Padgett L, Econs MJ. Iron and fibroblast growth factor 23 in X-linked hypophosphatemia. Bone. 2014;60:87–92.PubMedCrossRefGoogle Scholar
  37. 37.
    Schouten BJ, Doogue MP, Soule SG, Hunt PJ. Iron polymaltose-induced FGF23 elevation complicated by hypophosphataemic osteomalacia. Ann Clin Biochem. 2009;46(Pt 2):167–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Schouten BJ, Hunt PJ, Livesey JH, Frampton CM, Soule SG. FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J Clin Endocrinol Metab. 2009;94(7):2332–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Shimizu Y, Tada Y, Yamauchi M, Okamoto T, Suzuki H, Ito N, et al. Hypophosphatemia induced by intravenous administration of saccharated ferric oxide: another form of FGF23-related hypophosphatemia. Bone. 2009;45(4):814–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Wolf M, Koch TA, Bregman DB. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res. 2013;28(8):1793–803.PubMedCrossRefGoogle Scholar
  41. 41.
    Folpe A, Fanburg-Smith J, Billings S, Bisceglia M, Bertoni F, Cho J, et al. Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol. 2004;28(1):1–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Jan De Beur SM, Finnegan RB, Vassiliadis J, Cook B, Barberio D, Estes S, et al. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res. 2002;17(6):1102–10.CrossRefGoogle Scholar
  43. 43.
    Carpenter TO, Ellis BK, Insogna KL, Philbrick WM, Sterpka J, Shimkets R. FGF7 – an inhibitor of phosphate transport derived from oncogenic osteomalacia-causing tumors. J Clin Endocrinol Metab. 2005;90(2):1012–20.PubMedCrossRefGoogle Scholar
  44. 44.
    Imel EA, Peacock M, Pitukcheewanont P, Heller HJ, Ward LM, Shulman D, et al. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia. J Clin Endocrinol Metab. 2006;91(6):2055–61.PubMedCrossRefGoogle Scholar
  45. 45.
    Lee JC, Jeng YM, SY S, CT W, Tsai KS, Lee CH, et al. Identification of a novel FN1-FGFR1 genetic fusion as a frequent event in phosphaturic mesenchymal tumour. J Pathol. 2015;235(4):539–45.PubMedCrossRefGoogle Scholar
  46. 46.
    Andreopoulou P, Dumitrescu CE, Kelly MH, Brillante BA, Peck CM, Wodajo FM, et al. Selective venous catheterization for the localization of phosphaturic mesenchymal tumors. J Bone Miner Res. 2011;26:1295–302.PubMedCrossRefGoogle Scholar
  47. 47.
    Takeuchi Y, Suzuki H, Ogura S, Imai R, Yamazaki Y, Yamashita T, et al. Venous sampling for fibroblast growth factor-23 confirms preoperative diagnosis of tumor-induced osteomalacia. J Clin Endocrinol Metab. 2004;89(8):3979–82.PubMedCrossRefGoogle Scholar
  48. 48.
    Imel EA, Econs MJ. Approach to the Hypophosphatemic patient. J Clin Endocrinol Metab. 2012;97(3):696–706.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Riminucci M, Collins MT, Fedarko NS, Cherman N, Corsi A, White KE, et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest. 2003;112(5):683–92.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hoffman WH, Jueppner HW, Deyoung BR, O'Dorisio MS, Given KS. Elevated fibroblast growth factor-23 in hypophosphatemic linear nevus sebaceous syndrome. Am J Med Genet A. 2005;134(3):233–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Nafidi O, Lapointe RW, Lepage R, Kumar R, D’Amour P. Mechanisms of renal phosphate loss in liver resection-associated hypophosphatemia. Ann Surg. 2009;249(5):824–7.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wasserman H, Ikomi C, Hafberg ET, Miethke AG, Bove KE, Backeljauw PF. Two case reports of FGF23-induced hypophosphatemia in childhood biliary atresia. Pediatrics. 2016;138(2):e20154453.PubMedCrossRefGoogle Scholar
  53. 53.
    Prie D, Forand A, Francoz C, Elie C, Cohen I, Courbebaisse M, et al. Plasma fibroblast growth factor 23 concentration is increased and predicts mortality in patients on the liver-transplant waiting list. PLoS One. 2013;8(6):e66182.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78(2):193–201.PubMedCrossRefGoogle Scholar
  55. 55.
    Ichikawa S, Sorenson AH, Imel EA, Friedman NE, Gertner JM, Econs MJ. Intronic deletions in the SLC34A3 gene cause hereditary hypophosphatemic rickets with hypercalciuria. J Clin Endocrinol Metab. 2006;91(10):4022–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78(2):179–92.PubMedCrossRefGoogle Scholar
  57. 57.
    Jaureguiberry G, Carpenter TO, Forman S, Juppner H, Bergwitz C. A novel missense mutation in SLC34A3 that causes hereditary hypophosphatemic rickets with hypercalciuria in humans identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc. Am J Physiol Renal Physiol. 2008;295(2):F371–9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Dasgupta D, Wee MJ, Reyes M, Li Y, Simm PJ, Sharma A, et al. Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J Am Soc Nephrol. 2014;25(10):2366–75.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Magen D, Berger L, Coady MJ, Ilivitzki A, Militianu D, Tieder M, et al. A loss-of-function mutation in NaPi-IIa and renal Fanconi's syndrome. N Engl J Med. 2010;362(12):1102–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Scheinman SJ. X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int. 1998;53(1):3–17.PubMedCrossRefGoogle Scholar
  61. 61.
    Stechman MJ, Loh NY, Thakker RV. Genetic causes of hypercalciuric nephrolithiasis. Pediatr Nephrol. 2009;24(12):2321–32.PubMedCrossRefGoogle Scholar
  62. 62.
    Gonzalez Ballesteros L, Ma N, Ward L, Backeljauw P, Weber D, DiMeglio L, et al. Hypophosphatemia associated with elemental formula use in children with feeding problems. Annual Meeting of the American Society for Bone and Mineral Research; October 9–12, 2015, Seattle, 2015. p. S433.Google Scholar
  63. 63.
    Whyte MP. Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann N Y Acad Sci. 2011;1192:190–200.CrossRefGoogle Scholar
  64. 64.
    Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Wenkert D, et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med. 2012;366(10):904–13.PubMedCrossRefGoogle Scholar
  65. 65.
    Warman ML, Abbott M, Apte SS, Hefferon T, McIntosh I, Cohn DH, et al. A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat Genet. 1993;5(1):79–82.PubMedCrossRefGoogle Scholar
  66. 66.
    Vega RA, Opalak C, Harshbarger RJ, Fearon JA, Ritter AM, Collins JJ, et al. Hypophosphatemic rickets and craniosynostosis: a multicenter case series. J Neurosurg Pediatr. 2016:17(6):694–700.PubMedGoogle Scholar
  67. 67.
    Liang G, Katz LD, Insogna KL, Carpenter TO, Macica CM. Survey of the enthesopathy of X-linked hypophosphatemia and its characterization in Hyp mice. Calcif Tissue Int. 2009;85(3):235–46.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Fong H, Chu EY, Tompkins KA, Foster BL, Sitara D, Lanske B, et al. Aberrant cementum phenotype associated with the hypophosphatemic hyp mouse. J Periodontol. 2009;80(8):1348–54.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Walton RJ, Bijvoet OLM. Nomogram for derivation of renal threshold phosphate concentration. Lancet. 1975;306(7929):309–10.CrossRefGoogle Scholar
  70. 70.
    Brodehl J, Krause A, Hoyer PF. Assessment of maximal tubular phosphate reabsorption: comparison of direct measurement with the nomogram of Bijvoet. Pediatr Nephrol. 1988;2(2):183–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Stark H, Eisenstein B, Tieder M, Rachmel A, Alpert G. Direct measurement of TP/GFR: a simple and reliable parameter of renal phosphate handling. Nephron. 1986;44(2):125–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Alon U, Hellerstein S. Assessment and interpretation of the tubular threshold for phosphate in infants and children. Pediatr Nephrol. 1994;8(2):250–1.PubMedCrossRefGoogle Scholar
  73. 73.
    So NP, Osorio AV, Simon SD, Alon US. Normal urinary calcium/creatinine ratios in African-American and Caucasian children. Pediatr Nephrol. 2001;16(2):133–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Wagner CL, Greer FR, The Section on Breastfeeding Committee on Nutrition. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics. 2008;122(5):1142–52.PubMedCrossRefGoogle Scholar
  75. 75.
    Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global consensus recommendations on prevention and management of nutritional rickets. Horm Res Paediatr. 2016;85(2):83–106.PubMedCrossRefGoogle Scholar
  77. 77.
    Clements MR, Johnson L, Fraser DR. A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature. 1987;325(6099):62–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Thacher TD, Obadofin MO, O'Brien KO, Abrams SA. The effect of vitamin D2 and vitamin D3 on intestinal calcium absorption in Nigerian children with rickets. J Clin Endocrinol Metab. 2009;94(9):3314–21.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Thacher TD, Fischer PR, Pettifor JM, Lawson JO, Isichei CO, Reading JC, et al. A comparison of calcium, vitamin D, or both for nutritional rickets in Nigerian children. N Engl J Med. 1999;341(8):563–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Edouard T, Alos N, Chabot G, Roughley P, Glorieux FH, Rauch F. Short- and long-term outcome of patients with pseudo-vitamin D deficiency rickets treated with calcitriol. J Clin Endocrinol Metab. 2010;96:82–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Ma NS, Malloy PJ, Pitukcheewanont P, Dreimane D, Geffner ME, Feldman D. Hereditary vitamin D resistant rickets: identification of a novel splice site mutation in the vitamin D receptor gene and successful treatment with oral calcium therapy. Bone. 2009;45(4):743–6.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Balsan S, Garabedian M, Larchet M, Gorski AM, Cournot G, Tau C, et al. Long-term nocturnal calcium infusions can cure rickets and promote normal mineralization in hereditary resistance to 1,25-dihydroxyvitamin D. J Clin Invest. 1986;77(5):1661–7.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359(6):584–92.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cancela AL, Oliveira RB, Graciolli FG, Dos Reis LM, Barreto F, Barreto DV, et al. Fibroblast growth factor 23 in hemodialysis patients: effects of phosphate binder, calcitriol and calcium concentration in the dialysate. Nephron Clin Pract. 2010;117(1):c74–82.PubMedCrossRefGoogle Scholar
  85. 85.
    Covic A, Passlick-Deetjen J, Kroczak M, Büschges-Seraphin B, Ghenu A, Ponce P, et al. A comparison of calcium acetate/magnesium carbonate and sevelamer-hydrochloride effects on fibroblast growth factor-23 and bone markers: post hoc evaluation from a controlled, randomized study. Nephrology Dialysis Transplantation. 2013;28(9):2383–92.PubMedCentralCrossRefGoogle Scholar
  86. 86.
    Block GA, Wheeler DC, Persky MS, Kestenbaum B, Ketteler M, Spiegel DM, et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol. 2012;23(8):1407–15.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Makitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E. Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2003;88(8):3591–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Glorieux FH, Marie PJ, Pettifor JM, Delvin EE. Bone response to phosphate salts, ergocalciferol, and calcitriol in hypophosphatemic vitamin D-resistant rickets. N Engl J Med. 1980;303(18):1023–31.PubMedCrossRefGoogle Scholar
  89. 89.
    Harrell RM, Lyles KW, Harrelson JM, Friedman NE, Drezner MK. Healing of bone disease in X-linked hypophosphatemic rickets/osteomalacia. Induction and maintenance with phosphorus and calcitriol. J Clin Invest. 1985;75(6):1858–68.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician's guide to X-linked hypophosphatemia. J Bone Miner Res. 2011;26(7):1381–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Carpenter TO, Mitnick MA, Ellison A, Smith C, Insogna KL. Nocturnal hyperparathyroidism: a frequent feature of X-linked hypophosphatemia. J Clin Endocrinol Metab. 1994;78(6):1378–83.PubMedGoogle Scholar
  92. 92.
    Wilson DM. Growth hormone and hypophosphatemic rickets. J Pediatr Endocrinol Metab. 2000;13(Suppl 2):993–8.PubMedGoogle Scholar
  93. 93.
    Makitie O, Toiviainen-Salo S, Marttinen E, Kaitila I, Sochett E, Sipila I. Metabolic control and growth during exclusive growth hormone treatment in X-linked hypophosphatemic rickets. Horm Res. 2008;69(4):212–20.PubMedGoogle Scholar
  94. 94.
    Seikaly MG, Brown R, Baum M. The effect of recombinant human growth hormone in children with X-linked hypophosphatemia. Pediatrics. 1997;100(5):879–84.PubMedCrossRefGoogle Scholar
  95. 95.
    Saggese G, Baroncelli GI, Bertelloni S, Perri G. Long-term growth hormone treatment in children with renal hypophosphatemic rickets: effects on growth, mineral metabolism, and bone density. J Pediatr. 1995;127(3):395–402.PubMedCrossRefGoogle Scholar
  96. 96.
    Haffner D, Wuhl E, Blum WF, Schaefer F, Mehls O. Disproportionate growth following long-term growth hormone treatment in short children with X-linked hypophosphataemia. Eur J Pediatr. 1995;154(8):610–3.PubMedCrossRefGoogle Scholar
  97. 97.
    Zivicnjak M, Schnabel D, Staude H, Even G, Marx M, Beetz R, et al. Three-year growth hormone treatment in short children with X-linked Hypophosphatemic rickets: effects on linear growth and body disproportion. J Clin Endocrinol Metab. 2011;96(12):E2097–105.PubMedCrossRefGoogle Scholar
  98. 98.
    Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res. 2009;24:1879.PubMedCrossRefGoogle Scholar
  99. 99.
    Carpenter TO, Imel EA, Ruppe MD, Weber TJ, Klausner MA, Wooddell MM, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014;124(4):1587–97.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Imel EA, Zhang X, Ruppe MD, Weber TJ, Klausner MA, Ito T, et al. Prolonged correction of serum phosphorus in adults with X-linked hypophosphatemia using monthly doses of KRN23. J Clin Endocrinol Metab. 2015;100(7):2565–73.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Carpenter T, Imel E, Boot A, Högler W, Linglart A, Padidela R, et al. Randomized, open-label, dose-finding, phase 2 study of KRN23, a human monoclonal anti-FGF23 antibody, in children with X-linked hypophosphatemia (XLH). Endocrine Society Annual Meeting ENDO 2016; Boston, 2016. p. Abstract OR14–13.Google Scholar
  102. 102.
    Connor J, Olear EA, Insogna KL, Katz L, Baker S, Kaur R, et al. Conventional therapy in adults with X-linked hypophosphatemia: effects on Enthesopathy and dental disease. J Clin Endocrinol Metab. 2015;100(10):3625–32.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Carpenter TO, Olear EA, Zhang JH, Ellis BK, Simpson CA, Cheng D, et al. Effect of paricalcitol on circulating parathyroid hormone in X-linked hypophosphatemia: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2014;99(9):3103–11.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Alon US, Levy-Olomucki R, Moore WV, Stubbs J, Liu S, Quarles LD. Calcimimetics as an adjuvant treatment for familial Hypophosphatemic rickets. Clin J Am Soc Nephrol. 2008;3(3):658–64.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Raeder H, Bjerknes R, Shaw N, Netelenbos C. A case of X-linked hypophosphatemic rickets (XLH): complications and the therapeutic use of cinacalcet. Eur J Endocrinol. 2008.  https://doi.org/10.1530/EJE-08-0383.
  106. 106.
    Grove-Laugesen D, Rejnmark L. Three-year successful cinacalcet treatment of secondary hyperparathyroidism in a patient with x-linked dominant hypophosphatemic rickets: a case report. Case Rep Endocrinol. 2014;2014:479641.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Taylor A, Sherman NH, Norman ME. Nephrocalcinosis in X-linked hypophosphatemia: effect of treatment versus disease. Pediatr Nephrol. 1995;9(2):173–5.PubMedCrossRefGoogle Scholar
  108. 108.
    Verge CF, Lam A, Simpson JM, Cowell CT, Howard NJ, Silink M. Effects of therapy in X-linked hypophosphatemic rickets. N Engl J Med. 1991;325(26):1843–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Eddy MC, McAlister WH, Whyte MP. X-linked hypophosphatemia: normal renal function despite medullary nephrocalcinosis 25 years after transient vitamin D2-induced renal azotemia. Bone. 1997;21(6):515–20.PubMedCrossRefGoogle Scholar
  110. 110.
    Moltz KC, Friedman AH, Nehgme RA, Kleinman CS, Carpenter TO. Ectopic cardiac calcification associated with hyperparathyroidism in a boy with hypophosphatemic rickets. Curr Opin Pediatr. 2001;13(4):373–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Reid IR, Hardy DC, Murphy WA, Teitelbaum SL, Bergfeld MA, Whyte MP. X-linked hypophosphatemia: a clinical, biochemical, and histopathologic assessment of morbidity in adults. Medicine (Baltimore). 1989;68(6):336–52.CrossRefGoogle Scholar
  112. 112.
    Imel EA, Dimeglio LA, Hui SL, Carpenter TO, Econs MJ. Treatment of X-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab. 2010;95:1846.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Carpenter TO, Insogna KL, Zhang JH, Ellis B, Nieman S, Simpson C, et al. Circulating levels of soluble klotho and FGF23 in X-linked hypophosphatemia: circadian variance, effects of treatment, and relationship to parathyroid status. J Clin Endocrinol Metab. 2010;95(11):E352–7.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Endo I, Fukumoto S, Ozono K, Namba N, Tanaka H, Inoue D, et al. Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients proposal of diagnostic criteria using FGF23 measurement. Bone. 2008;42(6):1235–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15.PubMedCrossRefGoogle Scholar
  116. 116.
    Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology. 2005;146(12):5358–64.PubMedCrossRefGoogle Scholar
  117. 117.
    Watts L, Wordsworth P. Chiari malformation, syringomyelia and bulbar palsy in X linked hypophosphataemia. BMJ Case Rep 2015;2015. pii: bcr2015211961.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Caldemeyer KS, Boaz JC, Wappner RS, Moran CC, Smith RR, Quets JP. Chiari I malformation: association with hypophosphatemic rickets and MR imaging appearance. Radiology. 1995;195(3):733–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departments of Internal Medicine and PediatricsIndiana University School of MedicineIndianapolisUSA
  2. 2.Departments of Pediatrics and Orthopaedics and RehabilitationYale University School of MedicineNew HavenUSA

Personalised recommendations