Thyroid Neoplasia

  • Andrew J. Bauer
  • Steven G. Waguespack
  • Amelia Grover
  • Gary L. Francis


This chapter reviews recent advances in the management of thyroid nodules and differentiated thyroid cancers (papillary thyroid cancer, PTC; follicular thyroid cancer, FTC) and medullary thyroid cancer (MTC). The latter is usually associated with multiple endocrine neoplasia (MEN) type II in children.


Thyroid Cancer Nodule Child Multiple endocrine neoplasia Papillary Follicular PTC FTC MTC 


  1. 1.
    Hedinger C, Williams ED, Sobin LH. The WHO histological classification of thyroid tumors: a commentary on the second edition. Cancer. 1989;63(5):908–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, Lee N, Machens A, Moley JF, Pacini F, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, Dinauer CA, Hamilton J, Hay ID, Luster M, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25(7):716–59.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Mussa A, De Andrea M, Motta M, Mormile A, Palestini N, Corrias A. Predictors of malignancy in children with thyroid nodules. J Pediatr. 2015;167(4):886–92. e881PubMedCrossRefGoogle Scholar
  5. 5.
    Hayashida N, Imaizumi M, Shimura H, Okubo N, Asari Y, Nigawara T, Midorikawa S, Kotani K, Nakaji S, Otsuru A, et al. Thyroid ultrasound findings in children from three Japanese prefectures: aomori, yamanashi and nagasaki. PLoS One. 2013;8(12):e83220.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gupta A, Ly S, Castroneves LA, Frates MC, Benson CB, Feldman HA, Wassner AJ, Smith JR, Marqusee E, Alexander EK, et al. A standardized assessment of thyroid nodules in children confirms higher cancer prevalence than in adults. J Clin Endocrinol Metab. 2013;98(8):3238–45.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gupta A, Ly S, Castroneves LA, Frates MC, Benson CB, Feldman HA, Wassner AJ, Smith JR, Marqusee E, Alexander EK, et al. How are childhood thyroid nodules discovered: opportunities for improving early detection. J Pediatr. 2014;164(3):658–60.PubMedCrossRefGoogle Scholar
  8. 8.
    Capezzone M, Marchisotta S, Cantara S, Busonero G, Brilli L, Pazaitou-Panayiotou K, Carli AF, Caruso G, Toti P, Capitani S, et al. Familial non-medullary thyroid carcinoma displays the features of clinical anticipation suggestive of a distinct biological entity. Endocr Relat Cancer. 2008;15(4):1075–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Charkes ND. On the prevalence of familial nonmedullary thyroid cancer in multiply affected kindreds. Thyroid. 2006;16(2):181–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Mazeh H, Benavidez J, Poehls JL, Youngwirth L, Chen H, Sippel RS. In patients with thyroid cancer of follicular cell origin, a family history of nonmedullary thyroid cancer in one first-degree relative is associated with more aggressive disease. Thyroid. 2012;22(1):3–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Moses W, Weng J, Kebebew E. Prevalence, clinicopathologic features, and somatic genetic mutation profile in familial versus sporadic nonmedullary thyroid cancer. Thyroid. 2011;21(4):367–71.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Robenshtok E, Tzvetov G, Grozinsky-Glasberg S, Shraga-Slutzky I, Weinstein R, Lazar L, Serov S, Singer J, Hirsch D, Shimon I, et al. Clinical characteristics and outcome of familial nonmedullary thyroid cancer: a retrospective controlled study. Thyroid. 2011;21(1):43–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Sippel RS, Caron NR, Clark OH. An evidence-based approach to familial nonmedullary thyroid cancer: screening, clinical management, and follow-up. World J Surg. 2007;31(5):924–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Mihailovic J, Nikoletic K, Srbovan D. Recurrent disease in juvenile differentiated thyroid carcinoma: prognostic factors, treatments, and outcomes. J Nucl Med. 2014;55(5):710–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Rosario PW, Mineiro Filho AF, Prates BS, Silva LC, Lacerda RX, Calsolari MR. Ultrasonographic screening for thyroid cancer in siblings of patients with apparently sporadic papillary carcinoma. Thyroid. 2012;22(8):805–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Steinhagen E, Guillem JG, Chang G, Salo-Mullen EE, Shia J, Fish S, Stadler ZK, Markowitz AJ. The prevalence of thyroid cancer and benign thyroid disease in patients with familial adenomatous polyposis may be higher than previously recognized. Clin Colorectal Cancer. 2012;11(4):304–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Septer S, Slowik V, Morgan R, Dai H, Attard T. Thyroid cancer complicating familial adenomatous polyposis: mutation spectrum of at-risk individuals. Hered Cancer Clin Pract. 2013;11(1):13.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bertherat J, Horvath A, Groussin L, Grabar S, Boikos S, Cazabat L, Libe R, Rene-Corail F, Stergiopoulos S, Bourdeau I, et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. J Clin Endocrinol Metab. 2009;94(6):2085–91.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ngeow J, Mester J, Rybicki LA, Ni Y, Milas M, Eng C. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by Germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab. 2011;96(12):E2063–71.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Smith JR, Marqusee E, Webb S, Nose V, Fishman SJ, Shamberger RC, Frates MC, Huang SA. Thyroid nodules and cancer in children with PTEN hamartoma tumor syndrome. J Clin Endocrinol Metab. 2011;96(1):34–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Lauper JM, Krause A, Vaughan TL, Monnat RJ Jr. Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One. 2013;8(4):e59709.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rutter MM, Jha P, Schultz KA, Sheil A, Harris AK, Bauer AJ, Field AL, Geller J, Hill DA. DICER1 mutations and differentiated thyroid carcinoma: evidence of a direct association. J Clin Endocrinol Metab. 2016;101(1):1–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Doros L, Schultz KA, Stewart DR, Bauer AJ, Williams G, Rossi CT, Carr A, Yang J, Dehner LP, Messinger Y, et al. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K, editors. DICER1-related disorders. Seattle: GeneReviews(R); 1993.Google Scholar
  24. 24.
    Eng C. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, et al., editors. PTEN hamartoma tumor syndrome. Seattle: GeneReviews(R); 1993.Google Scholar
  25. 25.
    Jasperson KW, Burt RW. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, et al., editors. APC-associated polyposis conditions. Seattle: GeneReviews(R); 1993.Google Scholar
  26. 26.
    Aydin Y, Besir FH, Erkan ME, Yazgan O, Gungor A, Onder E, Coskun H, Aydin L. Spectrum and prevalence of nodular thyroid diseases detected by ultrasonography in the Western Black Sea region of Turkey. Med Ultrason. 2014;16(2):100–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Niedziela M, Korman E, Breborowicz D, Trejster E, Harasymczuk J, Warzywoda M, Rolski M, Breborowicz J. A prospective study of thyroid nodular disease in children and adolescents in western Poland from 1996 to 2000 and the incidence of thyroid carcinoma relative to iodine deficiency and the Chernobyl disaster. Pediatr Blood Cancer. 2004;42(1):84–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Caldwell KL, Makhmudov A, Ely E, Jones RL, Wang RY. Iodine status of the U.S. population, National Health and Nutrition Examination Survey, 2005-2006 and 2007-2008. Thyroid. 2011;21(4):419–27.PubMedCrossRefGoogle Scholar
  29. 29.
    Mazzaferri EL. Management of a solitary thyroid nodule. N Engl J Med. 1993;328(8):553–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Schneider AB, Bekerman C, Leland J, Rosengarten J, Hyun H, Collins B, Shore-Freedman E, Gierlowski TC. Thyroid nodules in the follow-up of irradiated individuals: comparison of thyroid ultrasound with scanning and palpation. J Clin Endocrinol Metab. 1997;82(12):4020–7.PubMedGoogle Scholar
  31. 31.
    Ito M, Yamashita S, Ashizawa K, Namba H, Hoshi M, Shibata Y, Sekine I, Nagataki S, Shigematsu I. Childhood thyroid diseases around Chernobyl evaluated by ultrasound examination and fine needle aspiration cytology. Thyroid. 1995;5(5):365–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Meadows AT, Friedman DL, Neglia JP, Mertens AC, Donaldson SS, Stovall M, Hammond S, Yasui Y, Inskip PD. Second neoplasms in survivors of childhood cancer: findings from the Childhood Cancer Survivor Study cohort. J Clin Oncol. 2009;27(14):2356–62.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, Schneider AB, Tucker MA, Boice JD Jr. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res. 1995;141(3):259–77.PubMedCrossRefGoogle Scholar
  34. 34.
    Ronckers CM, Sigurdson AJ, Stovall M, Smith SA, Mertens AC, Liu Y, Hammond S, Land CE, Neglia JP, Donaldson SS, et al. Thyroid cancer in childhood cancer survivors: a detailed evaluation of radiation dose response and its modifiers. Radiat Res. 2006;166(4):618–28.PubMedCrossRefGoogle Scholar
  35. 35.
    Li Z, Franklin J, Zelcer S, Sexton T, Husein M. Ultrasound surveillance for thyroid malignancies in survivors of childhood cancer following radiotherapy: a single institutional experience. Thyroid. 2014;24(12):1796–805.PubMedCrossRefGoogle Scholar
  36. 36.
    Clement SC, Kremer LC, Links TP, Mulder RL, Ronckers CM, van Eck-Smit BL, van Rijn RR, van der Pal HJ, Tissing WJ, Janssens GO, et al. Is outcome of differentiated thyroid carcinoma influenced by tumor stage at diagnosis? Cancer Treat Rev. 2015;41(1):9–16.PubMedCrossRefGoogle Scholar
  37. 37.
    Sklar C, Whitton J, Mertens A, Stovall M, Green D, Marina N, Greffe B, Wolden S, Robison L. Abnormalities of the thyroid in survivors of Hodgkin’s disease: data from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab. 2000;85(9):3227–32.PubMedPubMedCentralGoogle Scholar
  38. 38.
    de Vathaire F, Francois P, Schlumberger M, Schweisguth O, Hardiman C, Grimaud E, Oberlin O, Hill C, Lemerle J, Flamant R. Epidemiological evidence for a common mechanism for neuroblastoma and differentiated thyroid tumour. Br J Cancer. 1992;65(3):425–8.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Corrias A, Cassio A, Weber G, Mussa A, Wasniewska M, Rapa A, Gastaldi R, Einaudi S, Baronio F, Vigone MC, et al. Thyroid nodules and cancer in children and adolescents affected by autoimmune thyroiditis. Arch Pediatr Adolesc Med. 2008;162(6):526–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee SJ, Lim GY, Kim JY, Chung MH. Diagnostic performance of thyroid ultrasonography screening in pediatric patients with a hypothyroid, hyperthyroid or euthyroid goiter. Pediatr Radiol. 2016;46(1):104–11.PubMedCrossRefGoogle Scholar
  41. 41.
    Kambalapalli M, Gupta A, Prasad UR, Francis GL. Ultrasound characteristics of the thyroid in children and adolescents with goiter: a single center experience. Thyroid. 2015;25(2):176–82.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kovatch KJ, Bauer AJ, Isaacoff EJ, Prickett KK, Adzick NS, Kazahaya K, Sullivan LM, Mostoufi-Moab S. Pediatric thyroid carcinoma in patients with Graves’ disease: the role of ultrasound in selecting patients for definitive therapy. Horm Res Paediatr. 2015;83:408–13. Scholar
  43. 43.
    McLeod DS, Watters KF, Carpenter AD, Ladenson PW, Cooper DS, Ding EL. Thyrotropin and thyroid cancer diagnosis: a systematic review and dose-response meta-analysis. J Clin Endocrinol Metab. 2012;97(8):2682–92.PubMedCrossRefGoogle Scholar
  44. 44.
    Boelaert K, Horacek J, Holder RL, Watkinson JC, Sheppard MC, Franklyn JA. Serum thyrotropin concentration as a novel predictor of malignancy in thyroid nodules investigated by fine-needle aspiration. J Clin Endocrinol Metab. 2006;91(11):4295–301.PubMedCrossRefGoogle Scholar
  45. 45.
    Eszlinger M, Niedziela M, Typlt E, Jaeschke H, Huth S, Schaarschmidt J, Aigner T, Trejster E, Krohn K, Bosenberg E, et al. Somatic mutations in 33 benign and malignant hot thyroid nodules in children and adolescents. Mol Cell Endocrinol. 2014;393(1–2):39–45.PubMedCrossRefGoogle Scholar
  46. 46.
    Jatana KR, Zimmerman D. Pediatric thyroid nodules and malignancy. Otolaryngol Clin N Am. 2015;48(1):47–58.CrossRefGoogle Scholar
  47. 47.
    Rinaldi S, Plummer M, Biessy C, Tsilidis KK, Ostergaard JN, Overvad K, Tjonneland A, Halkjaer J, Boutron-Ruault MC, Clavel-Chapelon F, et al. Thyroid-stimulating hormone, thyroglobulin, and thyroid hormones and risk of differentiated thyroid carcinoma: the EPIC study. J Natl Cancer Inst. 2014;106(6):dju097.PubMedCrossRefGoogle Scholar
  48. 48.
    Niedziela M, Breborowicz D, Trejster E, Korman E. Hot nodules in children and adolescents in western Poland from 1996 to 2000: clinical analysis of 31 patients. J Pediatr Endocrinol Metab. 2002;15(6):823–30.PubMedCrossRefGoogle Scholar
  49. 49.
    American Institute of Ultrasound in M, American College of R, Society for Pediatric R, Society of Radiologists in U. AIUM practice guideline for the performance of a thyroid and parathyroid ultrasound examination. J Ultrasound Med. 2013;32(7):1319–29.CrossRefGoogle Scholar
  50. 50.
    Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr Relat Cancer. 2006;13(2):427–53.PubMedCrossRefGoogle Scholar
  52. 52.
    Gharib H, Papini E, Valcavi R, Baskin HJ, Crescenzi A, Dottorini ME, Duick DS, Guglielmi R, Hamilton CR Jr, Zeiger MA, et al. American Association of Clinical Endocrinologists and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocr Pract. 2006;12(1):63–102.PubMedCrossRefGoogle Scholar
  53. 53.
    Akaishi J, Sugino K, Kameyama K, Masaki C, Matsuzu K, Suzuki A, Uruno T, Ohkuwa K, Shibuya H, Kitagawa W, et al. Clinicopathologic features and outcomes in patients with diffuse sclerosing variant of papillary thyroid carcinoma. World J Surg. 2015;39(7):1728–35.PubMedCrossRefGoogle Scholar
  54. 54.
    Chen CC, Chen WC, Peng SL, Huang SM. Diffuse sclerosing variant of thyroid papillary carcinoma: diagnostic challenges occur with Hashimoto’s thyroiditis. J Formos Med Assoc. 2013;112(6):358–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Jung HK, Hong SW, Kim EK, Yoon JH, Kwak JY. Diffuse sclerosing variant of papillary thyroid carcinoma: sonography and specimen radiography. J Ultrasound Med. 2013;32(2):347–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Kuo CS, Tang KT, Lin JD, Yang AH, Lee CH, Lin HD. Diffuse sclerosing variant of papillary thyroid carcinoma with multiple metastases and elevated serum carcinoembryonic antigen level. Thyroid. 2012;22(11):1187–90.PubMedCrossRefGoogle Scholar
  57. 57.
    Lee JY, Shin JH, Han BK, Ko EY, Kang SS, Kim JY, Oh YL, Chung JH. Diffuse sclerosing variant of papillary carcinoma of the thyroid: imaging and cytologic findings. Thyroid. 2007;17(6):567–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Regalbuto C, Malandrino P, Tumminia A, Le Moli R, Vigneri R, Pezzino V. A diffuse sclerosing variant of papillary thyroid carcinoma: clinical and pathologic features and outcomes of 34 consecutive cases. Thyroid. 2011;21(4):383–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Takagi N, Hirokawa M, Nobuoka Y, Higuchi M, Kuma S, Miyauchi A. Diffuse sclerosing variant of papillary thyroid carcinoma: a study of fine needle aspiration cytology in 20 patients. Cytopathology. 2014;25(3):199–204.PubMedCrossRefGoogle Scholar
  60. 60.
    Thompson LD, Wieneke JA, Heffess CS. Diffuse sclerosing variant of papillary thyroid carcinoma: a clinicopathologic and immunophenotypic analysis of 22 cases. Endocr Pathol. 2005;16(4):331–48.PubMedCrossRefGoogle Scholar
  61. 61.
    Vukasovic A, Kuna SK, Ostovic KT, Prgomet D, Banek T. Diffuse sclerosing variant of thyroid carcinoma presenting as Hashimoto thyroiditis: a case report. Coll Antropol. 2012;36(Suppl 2):219–21.PubMedGoogle Scholar
  62. 62.
    Koo JS, Hong S, Park CS. Diffuse sclerosing variant is a major subtype of papillary thyroid carcinoma in the young. Thyroid. 2009;19(11):1225–31.PubMedCrossRefGoogle Scholar
  63. 63.
    Pillai S, Gopalan V, Smith RA, Lam AK. Diffuse sclerosing variant of papillary thyroid carcinoma – an update of its clinicopathological features and molecular biology. Crit Rev Oncol Hematol. 2015;94(1):64–73.PubMedCrossRefGoogle Scholar
  64. 64.
    Leboulleux S, Girard E, Rose M, Travagli JP, Sabbah N, Caillou B, Hartl DM, Lassau N, Baudin E, Schlumberger M. Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab. 2007;92(9):3590–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Lyshchik A, Drozd V, Demidchik Y, Reiners C. Diagnosis of thyroid cancer in children: value of gray-scale and power doppler US. Radiology. 2005;235(2):604–13.PubMedCrossRefGoogle Scholar
  66. 66.
    Baskin HJ. Detection of recurrent papillary thyroid carcinoma by thyroglobulin assessment in the needle washout after fine-needle aspiration of suspicious lymph nodes. Thyroid. 2004;14(11):959–63.PubMedCrossRefGoogle Scholar
  67. 67.
    Boi F, Baghino G, Atzeni F, Lai ML, Faa G, Mariotti S. The diagnostic value for differentiated thyroid carcinoma metastases of thyroglobulin (Tg) measurement in washout fluid from fine-needle aspiration biopsy of neck lymph nodes is maintained in the presence of circulating anti-Tg antibodies. J Clin Endocrinol Metab. 2006;91(4):1364–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Oertel JE, Klinck GH. Structural changes in the thyroid glands of healthy young men. Med Ann Dist Columbia. 1965;34:75–7.PubMedGoogle Scholar
  69. 69.
    Pinchot SN, Al-Wagih H, Schaefer S, Sippel R, Chen H. Accuracy of fine-needle aspiration biopsy for predicting neoplasm or carcinoma in thyroid nodules 4 cm or larger. Arch Surg. 2009;144(7):649–55.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    McCoy KL, Jabbour N, Ogilvie JB, Ohori NP, Carty SE, Yim JH. The incidence of cancer and rate of false-negative cytology in thyroid nodules greater than or equal to 4 cm in size. Surgery. 2007;142(6):837–44; discussion 844 e831–833.PubMedCrossRefGoogle Scholar
  71. 71.
    Wharry LI, McCoy KL, Stang MT, Armstrong MJ, LeBeau SO, Tublin ME, Sholosh B, Silbermann A, Ohori NP, Nikiforov YE, et al. Thyroid nodules (>/=4 cm): can ultrasound and cytology reliably exclude cancer? World J Surg. 2014;38(3):614–21.PubMedCrossRefGoogle Scholar
  72. 72.
    Norlen O, Charlton A, Sarkis LM, Henwood T, Shun A, Gill AJ, Delbridge L. Risk of malignancy for each Bethesda class in pediatric thyroid nodules. J Pediatr Surg. 2015;50(7):1147–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Buryk MA, Simons JP, Picarsic J, Monaco SE, Ozolek JA, Joyce J, Gurtunca N, Nikiforov YE, Feldman Witchel S. Can malignant thyroid nodules be distinguished from benign thyroid nodules in children and adolescents by clinical characteristics? A review of 89 pediatric patients with thyroid nodules. Thyroid. 2015;25(4):392–400.PubMedCrossRefGoogle Scholar
  74. 74.
    Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid. 2009;19(11):1159–65.PubMedCrossRefGoogle Scholar
  75. 75.
    Baloch ZW, LiVolsi VA, Asa SL, Rosai J, Merino MJ, Randolph G, Vielh P, DeMay RM, Sidawy MK, Frable WJ. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute thyroid fine-needle aspiration state of the science conference. Diagn Cytopathol. 2008;36(6):425–37.PubMedCrossRefGoogle Scholar
  76. 76.
    Theoharis CG, Schofield KM, Hammers L, Udelsman R, Chhieng DC. The Bethesda thyroid fine-needle aspiration classification system: year 1 at an academic institution. Thyroid. 2009;19(11):1215–23.PubMedCrossRefGoogle Scholar
  77. 77.
    Luu MH, Fischer AH, Pisharodi L, Owens CL. Improved preoperative definitive diagnosis of papillary thyroid carcinoma in FNAs prepared with both ThinPrep and conventional smears compared with FNAs prepared with ThinPrep alone. Cancer Cytopathol. 2011;119(1):68–73.PubMedCrossRefGoogle Scholar
  78. 78.
    Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol. 2012;56(4):333–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Baloch ZW, LiVolsi VA. Post fine-needle aspiration histologic alterations of thyroid revisited. Am J Clin Pathol. 1999;112(3):311–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Antic T, Taxy JB. Thyroid frozen section: supplementary or unnecessary? Am J Surg Pathol. 2013;37(2):282–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Kesmodel SB, Terhune KP, Canter RJ, Mandel SJ, LiVolsi VA, Baloch ZW, Fraker DL. The diagnostic dilemma of follicular variant of papillary thyroid carcinoma. Surgery. 2003;134(6):1005–12; discussion 1012.PubMedCrossRefGoogle Scholar
  82. 82.
    Baloch Z, LiVolsi VA, Jain P, Jain R, Aljada I, Mandel S, Langer JE, Gupta PK. Role of repeat fine-needle aspiration biopsy (FNAB) in the management of thyroid nodules. Diagn Cytopathol. 2003;29(4):203–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Yassa L, Cibas ES, Benson CB, Frates MC, Doubilet PM, Gawande AA, Moore FD Jr, Kim BW, Nose V, Marqusee E, et al. Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer. 2007;111(6):508–16.PubMedCrossRefGoogle Scholar
  84. 84.
    Yang J, Schnadig V, Logrono R, Wasserman PG. Fine-needle aspiration of thyroid nodules: a study of 4703 patients with histologic and clinical correlations. Cancer. 2007;111(5):306–15.PubMedCrossRefGoogle Scholar
  85. 85.
    Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, Gooding WE, Hodak SP, LeBeau SO, Ohori NP, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627–34.PubMedCrossRefGoogle Scholar
  86. 86.
    Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, Yip L, Seethala RR, Tublin ME, Stang MT, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96(11):3390–7.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, Friedman L, Kloos RT, Livolsi VA, Mandel SJ, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–15.PubMedCrossRefGoogle Scholar
  88. 88.
    Cerutti JM. Employing genetic markers to improve diagnosis of thyroid tumor fine needle biopsy. Curr Genomics. 2011;12(8):589–96.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Duick DS. Overview of molecular biomarkers for enhancing the management of cytologically indeterminate thyroid nodules and thyroid cancer. Endocr Pract. 2012;18(4):611–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Ferraz C, Eszlinger M, Paschke R. Current state and future perspective of molecular diagnosis of fine-needle aspiration biopsy of thyroid nodules. J Clin Endocrinol Metab. 2011;96(7):2016–26.PubMedCrossRefGoogle Scholar
  91. 91.
    Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80.PubMedCrossRefGoogle Scholar
  92. 92.
    Pagan M, Kloos RT, Lin CF, Travers KJ, Matsuzaki H, Tom EY, Kim SY, Wong MG, Stewart AC, Huang J, et al. The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes. BMC Bioinformatics. 2016;17(Suppl 1):6.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Buryk MA, Monaco SE, Witchel SF, Mehta DK, Gurtunca N, Nikiforov YE, Simons JP. Preoperative cytology with molecular analysis to help guide surgery for pediatric thyroid nodules. Int J Pediatr Otorhinolaryngol. 2013;77(10):1697–700.PubMedCrossRefGoogle Scholar
  94. 94.
    Monaco SE, Pantanowitz L, Khalbuss WE, Benkovich VA, Ozolek J, Nikiforova MN, Simons JP, Nikiforov YE. Cytomorphological and molecular genetic findings in pediatric thyroid fine-needle aspiration. Cancer Cytopathol. 2012;120(5):342–50.PubMedCrossRefGoogle Scholar
  95. 95.
    Nikita ME, Jiang W, Cheng SM, Hantash FM, McPhaul MJ, Newbury RO, Phillips SA, Reitz RE, Waldman FM, Newfield RS. Mutational analysis in pediatric thyroid cancer and correlations with age, ethnicity, and clinical presentation. Thyroid. 2016;26(2):227–34.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ballester LY, Sarabia SF, Sayeed H, Patel N, Baalwa J, Athanassaki I, Hernandez JA, Fang E, Quintanilla NM, Roy A, et al. Integrating molecular testing in the diagnosis and management of children with thyroid lesions. Pediatr Dev Pathol. 2016;19(2):94–100.PubMedCrossRefGoogle Scholar
  97. 97.
    Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, Dinauer CA, Hamilton J, Hay ID, Luster M, Parisi MT, Rachmiel M, Thompson GB, Yamashita S, Designates Chair (GLF) and Co-Chairs (AJB and SGW). Guidelines Task Force in Alphabetical Order Following the Chairs. Management guidelines for children with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on pediatric thyroid cancer. Thyroid. 2015;25(7):716–59.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Picarsic JL, Buryk MA, Ozolek J, Ranganathan S, Monaco SE, Simons JP, Witchel SF, Gurtunca N, Joyce J, Zhong S, et al. Molecular characterization of sporadic pediatric thyroid carcinoma with the DNA/RNA ThyroSeq v2 next-generation sequencing assay. Pediatr Dev Pathol. 2016;19(2):115–22.PubMedCrossRefGoogle Scholar
  99. 99.
    Prasad ML, Vyas M, Horne MJ, Virk RK, Morotti R, Liu Z, Tallini G, Nikiforova MN, Christison-Lagay ER, Udelsman R, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer. 2016;122(7):1097–107.PubMedCrossRefGoogle Scholar
  100. 100.
    Ricarte-Filho JC, Li S, Garcia-Rendueles ME, Montero-Conde C, Voza F, Knauf JA, Heguy A, Viale A, Bogdanova T, Thomas GA, et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest. 2013;123(11):4935–44.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Smith M, Pantanowitz L, Khalbuss WE, Benkovich VA, Monaco SE. Indeterminate pediatric thyroid fine needle aspirations: a study of 68 cases. Acta Cytol. 2013;57(4):341–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Nikiforov YE, Steward DL, Robinson-Smith TM, Haugen BR, Klopper JP, Zhu Z, Fagin JA, Falciglia M, Weber K, Nikiforova MN. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94(6):2092–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Hauch A, Al-Qurayshi Z, Randolph G, Kandil E. Total thyroidectomy is associated with increased risk of complications for low- and high-volume surgeons. Ann Surg Oncol. 2014;21(12):3844–52.PubMedCrossRefGoogle Scholar
  104. 104.
    Sosa JA, Tuggle CT, Wang TS, Thomas DC, Boudourakis L, Rivkees S, Roman SA. Clinical and economic outcomes of thyroid and parathyroid surgery in children. J Clin Endocrinol Metab. 2008;93(8):3058–65.PubMedCrossRefGoogle Scholar
  105. 105.
    Tuggle CT, Roman SA, Wang TS, Boudourakis L, Thomas DC, Udelsman R, Ann Sosa J. Pediatric endocrine surgery: who is operating on our children? Surgery. 2008;144(6):869–77; discussion 877.PubMedCrossRefGoogle Scholar
  106. 106.
    Verloop H, Louwerens M, Schoones JW, Kievit J, Smit JW, Dekkers OM. Risk of hypothyroidism following hemithyroidectomy: systematic review and meta-analysis of prognostic studies. J Clin Endocrinol Metab. 2012;97(7):2243–55.PubMedCrossRefGoogle Scholar
  107. 107.
    Avram AM, Shulkin BL. Thyroid cancer in children. J Nucl Med. 2014;55(5):705–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Hogan AR, Zhuge Y, Perez EA, Koniaris LG, Lew JI, Sola JE. Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients. J Surg Res. 2009;156(1):167–72.PubMedCrossRefGoogle Scholar
  109. 109.
    Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988-2005. Cancer. 2009;115(16):3801–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Morris LG, Myssiorek D. Improved detection does not fully explain the rising incidence of well-differentiated thyroid cancer: a population-based analysis. Am J Surg. 2010;200(4):454–61.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wu XC, Chen VW, Steele B, Roffers S, Klotz JB, Correa CN, Carozza SE. Cancer incidence in adolescents and young adults in the United States, 1992-1997. J Adolesc Health. 2003;32(6):405–15.PubMedCrossRefGoogle Scholar
  112. 112.
    Demidchik YE, Saenko VA, Yamashita S. Childhood thyroid cancer in Belarus, Russia, and Ukraine after Chernobyl and at present. Arq Bras Endocrinol Metabol. 2007;51(5):748–62.PubMedCrossRefGoogle Scholar
  113. 113.
    SEER Cancer Statisitcs Review, 1975-2007. – survival.
  114. 114.
    Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, Caillou B, Ricard M, Lumbroso JD, De Vathaire F, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91(8):2892–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Hay ID, Gonzalez-Losada T, Reinalda MS, Honetschlager JA, Richards ML, Thompson GB. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg. 2010;34(6):1192–202.PubMedCrossRefGoogle Scholar
  116. 116.
    Sugino K, Nagahama M, Kitagawa W, Shibuya H, Ohkuwa K, Uruno T, Suzuki A, Akaishi J, Masaki C, Matsuzu K, et al. Papillary thyroid carcinoma in children and adolescents: long-term follow-up and clinical characteristics. World J Surg. 2015;39(9):2259–65.PubMedCrossRefGoogle Scholar
  117. 117.
    Vander Poorten V, Hens G, Delaere P. Thyroid cancer in children and adolescents. Curr Opin Otolaryngol Head Neck Surg. 2013;21(2):135–42.PubMedCrossRefGoogle Scholar
  118. 118.
    O’Gorman CS, Hamilton J, Rachmiel M, Gupta A, Ngan BY, Daneman D. Thyroid cancer in childhood: a retrospective review of childhood course. Thyroid. 2010;20(4):375–80.PubMedCrossRefGoogle Scholar
  119. 119.
    Lazar L, Lebenthal Y, Steinmetz A, Yackobovitch-Gavan M, Phillip M. Differentiated thyroid carcinoma in pediatric patients: comparison of presentation and course between pre-pubertal children and adolescents. J Pediatr. 2009;154(5):708–14.PubMedCrossRefGoogle Scholar
  120. 120.
    Schreiner BF, Murphy WT. Malignant neoplasms of the thyroid gland. Ann Surg. 1934;99(1):116–25.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy; effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc. 1946;132(14):838–47.PubMedCrossRefGoogle Scholar
  122. 122.
    Sugino K, Kure Y, Iwasaki H, Ozaki O, Mimura T, Matsumoto A, Ito K. Metastases to the regional lymph nodes, lymph node recurrence, and distant metastases in nonadvanced papillary thyroid carcinoma. Surg Today. 1995;25(4):324–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Machens A, Lorenz K, Nguyen Thanh P, Brauckhoff M, Dralle H. Papillary thyroid cancer in children and adolescents does not differ in growth pattern and metastatic behavior. J Pediatr. 2010;157(4):648–52.PubMedCrossRefGoogle Scholar
  124. 124.
    Biko J, Reiners C, Kreissl MC, Verburg FA, Demidchik Y, Drozd V. Favourable course of disease after incomplete remission on (131)I therapy in children with pulmonary metastases of papillary thyroid carcinoma: 10 years follow-up. Eur J Nucl Med Mol Imaging. 2011;38(4):651–5.PubMedCrossRefGoogle Scholar
  125. 125.
    La Quaglia MP, Black T, Holcomb GW 3rd, Sklar C, Azizkhan RG, Haase GM, Newman KD. Differentiated thyroid cancer: clinical characteristics, treatment, and outcome in patients under 21 years of age who present with distant metastases. A report from the Surgical Discipline Committee of the Children’s Cancer Group. J Pediatr Surg. 2000;35(6):955–9; discussion 960.PubMedCrossRefGoogle Scholar
  126. 126.
    Brown AP, Chen J, Hitchcock YJ, Szabo A, Shrieve DC, Tward JD. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93(2):504–15.PubMedCrossRefGoogle Scholar
  127. 127.
    Marti JL, Jain KS, Morris LG. Increased risk of second primary malignancy in pediatric and young adult patients treated with radioactive iodine for differentiated thyroid cancer. Thyroid. 2015;25(6):681–7.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Chow SM, Law SC, Mendenhall WM, Au SK, Yau S, Mang O, Lau WH. Differentiated thyroid carcinoma in childhood and adolescence-clinical course and role of radioiodine. Pediatr Blood Cancer. 2004;42(2):176–83.PubMedCrossRefGoogle Scholar
  129. 129.
    Tucker MA, Jones PH, Boice JD Jr, Robison LL, Stone BJ, Stovall M, Jenkin RD, Lubin JH, Baum ES, Siegel SE, et al. Therapeutic radiation at a young age is linked to secondary thyroid cancer. The Late Effects Study Group. Cancer Res. 1991;51(11):2885–8.PubMedGoogle Scholar
  130. 130.
    Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab. 2000;85(3):1170–5.PubMedGoogle Scholar
  131. 131.
    Penko K, Livezey J, Fenton C, Patel A, Nicholson D, Flora M, Oakley K, Tuttle RM, Francis G. BRAF mutations are uncommon in papillary thyroid cancer of young patients. Thyroid. 2005;15(4):320–5.PubMedCrossRefGoogle Scholar
  132. 132.
    Henke LE, Perkins SM, Pfeifer JD, Ma C, Chen Y, DeWees T, Grigsby PW. BRAF V600E mutational status in pediatric thyroid cancer. Pediatr Blood Cancer. 2014;61(7):1168–72.PubMedCrossRefGoogle Scholar
  133. 133.
    Givens DJ, Buchmann LO, Agarwal AM, Grimmer JF, Hunt JP. BRAF V600E does not predict aggressive features of pediatric papillary thyroid carcinoma. Laryngoscope. 2014;124(9):E389–93.PubMedCrossRefGoogle Scholar
  134. 134.
    Kebebew E. Hereditary non-medullary thyroid cancer. World J Surg. 2008;32(5):678–82.PubMedCrossRefGoogle Scholar
  135. 135.
    Alsanea O, Wada N, Ain K, Wong M, Taylor K, Ituarte PH, Treseler PA, Weier HU, Freimer N, Siperstein AE, et al. Is familial non-medullary thyroid carcinoma more aggressive than sporadic thyroid cancer? A multicenter series. Surgery. 2000;128(6):1043–50;discussion 1050–1041.PubMedCrossRefGoogle Scholar
  136. 136.
    Demidchik YE, Demidchik EP, Reiners C, Biko J, Mine M, Saenko VA, Yamashita S. Comprehensive clinical assessment of 740 cases of surgically treated thyroid cancer in children of Belarus. Ann Surg. 2006;243(4):525–32.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Borson-Chazot F, Causeret S, Lifante JC, Augros M, Berger N, Peix JL. Predictive factors for recurrence from a series of 74 children and adolescents with differentiated thyroid cancer. World J Surg. 2004;28(11):1088–92.PubMedCrossRefGoogle Scholar
  138. 138.
    Kouvaraki MA, Shapiro SE, Fornage BD, Edeiken-Monro BS, Sherman SI, Vassilopoulou-Sellin R, Lee JE, Evans DB. Role of preoperative ultrasonography in the surgical management of patients with thyroid cancer. Surgery. 2003;134(6):946–54; discussion 954-945.PubMedCrossRefGoogle Scholar
  139. 139.
    Waguespack SG, Francis G. Initial management and follow-up of differentiated thyroid cancer in children. J Natl Compr Cancer Netw. 2010;8(11):1289–300.CrossRefGoogle Scholar
  140. 140.
    Knudsen N, Christiansen E, Brandt-Christensen M, Nygaard B, Perrild H. Age- and sex-adjusted iodine/creatinine ratio. A new standard in epidemiological surveys? Evaluation of three different estimates of iodine excretion based on casual urine samples and comparison to 24 h values. Eur J Clin Nutr. 2000;54(4):361–3.PubMedCrossRefGoogle Scholar
  141. 141.
    Sohn SY, Choi JH, Kim NK, Joung JY, Cho YY, Park SM, Kim TH, Jin SM, Bae JC, Lee SY, et al. The impact of iodinated contrast agent administered during preoperative computed tomography scan on body iodine pool in patients with differentiated thyroid cancer preparing for radioactive iodine treatment. Thyroid. 2014;24(5):872–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Welch Dinauer CA, Tuttle RM, Robie DK, McClellan DR, Francis GL. Extensive surgery improves recurrence-free survival for children and young patients with class I papillary thyroid carcinoma. J Pediatr Surg. 1999;34(12):1799–804.PubMedCrossRefGoogle Scholar
  143. 143.
    Handkiewicz-Junak D, Wloch J, Roskosz J, Krajewska J, Kropinska A, Pomorski L, Kukulska A, Prokurat A, Wygoda Z, Jarzab B. Total thyroidectomy and adjuvant radioiodine treatment independently decrease locoregional recurrence risk in childhood and adolescent differentiated thyroid cancer. J Nucl Med. 2007;48(6):879–88.PubMedCrossRefGoogle Scholar
  144. 144.
    Jarzab B, Handkiewicz Junak D, Wloch J, Kalemba B, Roskosz J, Kukulska A, Puch Z. Multivariate analysis of prognostic factors for differentiated thyroid carcinoma in children. Eur J Nucl Med. 2000;27(7):833–41.PubMedCrossRefGoogle Scholar
  145. 145.
    Grigsby PW, Gal-or A, Michalski JM, Doherty GM. Childhood and adolescent thyroid carcinoma. Cancer. 2002;95(4):724–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Musacchio MJ, Kim AW, Vijungco JD, Prinz RA. Greater local recurrence occurs with “berry picking” than neck dissection in thyroid cancer. Am Surg. 2003;69(3):191–6; discussion 196-197.PubMedGoogle Scholar
  147. 147.
    van Santen HM, Aronson DC, Vulsma T, Tummers RF, Geenen MM, de Vijlder JJ, van den Bos C. Frequent adverse events after treatment for childhood-onset differentiated thyroid carcinoma: a single institute experience. Eur J Cancer. 2004;40(11):1743–51.PubMedCrossRefGoogle Scholar
  148. 148.
    Thompson GB, Hay ID. Current strategies for surgical management and adjuvant treatment of childhood papillary thyroid carcinoma. World J Surg. 2004;28(12):1187–98.PubMedCrossRefGoogle Scholar
  149. 149.
    Bilimoria KY, Bentrem DJ, Ko CY, Stewart AK, Winchester DP, Talamonti MS, Sturgeon C. Extent of surgery affects survival for papillary thyroid cancer. Ann Surg. 2007;246(3):375–81; discussion 381-374.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Porterfield JR, Factor DA, Grant CS. Operative technique for modified radical neck dissection in papillary thyroid carcinoma. Arch Surg. 2009;144(6):567–74; discussion 574.PubMedCrossRefGoogle Scholar
  151. 151.
    Jarzab B, Handkiewicz-Junak D. Differentiated thyroid cancer in children and adults: same or distinct disease? Hormones (Athens, Greece). 2007;6(3):200–9.Google Scholar
  152. 152.
    Savio R, Gosnell J, Palazzo FF, Sywak M, Agarwal G, Cowell C, Shun A, Robinson B, Delbridge LW. The role of a more extensive surgical approach in the initial multimodality management of papillary thyroid cancer in children. J Pediatr Surg. 2005;40(11):1696–700.PubMedCrossRefGoogle Scholar
  153. 153.
    Sywak M, Cornford L, Roach P, Stalberg P, Sidhu S, Delbridge L. Routine ipsilateral level VI lymphadenectomy reduces postoperative thyroglobulin levels in papillary thyroid cancer. Surgery. 2006;140(6):1000–5; discussion 1005-1007.PubMedCrossRefGoogle Scholar
  154. 154.
    Grubbs EG, Rich TA, Li G, Sturgis EM, Younes MN, Myers JN, Edeiken-Monroe B, Fornage BD, Monroe DP, Staerkel GA, et al. Recent advances in thyroid cancer. Curr Probl Surg. 2008;45(3):149–51.PubMedCrossRefGoogle Scholar
  155. 155.
    Shen WT, Ogawa L, Ruan D, Suh I, Duh QY, Clark OH. Central neck lymph node dissection for papillary thyroid cancer: the reliability of surgeon judgment in predicting which patients will benefit. Surgery. 2010;148(2):398–403.PubMedCrossRefGoogle Scholar
  156. 156.
    Moo TA, Umunna B, Kato M, Butriago D, Kundel A, Lee JA, Zarnegar R, Fahey TJ 3rd. Ipsilateral versus bilateral central neck lymph node dissection in papillary thyroid carcinoma. Ann Surg. 2009;250(3):403–8.PubMedGoogle Scholar
  157. 157.
    Newman KD, Black T, Heller G, Azizkhan RG, Holcomb GW 3rd, Sklar C, Vlamis V, Haase GM, La Quaglia MP. Differentiated thyroid cancer: determinants of disease progression in patients <21 years of age at diagnosis: a report from the Surgical Discipline Committee of the Children’s Cancer Group. Ann Surg. 1998;227(4):533–41.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Sosa JA, Bowman HM, Tielsch JM, Powe NR, Gordon TA, Udelsman R. The importance of surgeon experience for clinical and economic outcomes from thyroidectomy. Ann Surg. 1998;228(3):320–30.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Burke JF, Sippel RS, Chen H. Evolution of pediatric thyroid surgery at a tertiary medical center. J Surg Res. 2012;177(2):268–74.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Angelos P. Recurrent laryngeal nerve monitoring: state of the art, ethical and legal issues. Surg Clin North Am. 2009;89(5):1157–69.PubMedCrossRefGoogle Scholar
  161. 161.
    Palmer BA, Zarroug AE, Poley RN, Kollars JP, Moir CR. Papillary thyroid carcinoma in children: risk factors and complications of disease recurrence. J Pediatr Surg. 2005;40(8):1284–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Popovtzer A, Shpitzer T, Bahar G, Feinmesser R, Segal K. Thyroid cancer in children: management and outcome experience of a referral center. Otolaryngol Head Neck Surg. 2006;135(4):581–4.PubMedCrossRefGoogle Scholar
  163. 163.
    Ji QH, Zhang L, Zhu YX, Huang CP. Long-term impact of initial surgical and medical therapy on young patients with papillary thyroid cancer and bilateral cervical metastases. Chin Med J. 2008;121(1):63–6.PubMedGoogle Scholar
  164. 164.
    Bargren AE, Meyer-Rochow GY, Delbridge LW, Sidhu SB, Chen H. Outcomes of surgically managed pediatric thyroid cancer. J Surg Res. 2009;156(1):70–3.PubMedCrossRefGoogle Scholar
  165. 165.
    Raval MV, Browne M, Chin AC, Zimmerman D, Angelos P, Reynolds M. Total thyroidectomy for benign disease in the pediatric patient – feasible and safe. J Pediatr Surg. 2009;44(8):1529–33.PubMedCrossRefGoogle Scholar
  166. 166.
    Spinelli C, Strambi S, Rossi L, Bakkar S, Massimino M, Ferrari A, Collini P, Cecchetto G, Bisogno G, Inserra A, et al. Surgical management of papillary thyroid carcinoma in childhood and adolescence: an Italian multicenter study on 250 patients. J Endocrinol Investig. 2016;39(9):1055–9.CrossRefGoogle Scholar
  167. 167.
    Scholz S, Smith JR, Chaignaud B, Shamberger RC, Huang SA. Thyroid surgery at Children’s Hospital Boston: a 35-year single-institution experience. J Pediatr Surg. 2011;46(3):437–42.PubMedCrossRefGoogle Scholar
  168. 168.
    Nobori M, Saiki S, Tanaka N, Harihara Y, Shindo S, Fujimoto Y. Blood supply of the parathyroid gland from the superior thyroid artery. Surgery. 1994;115(4):417–23.PubMedGoogle Scholar
  169. 169.
    Jumaily JS, Noordzij JP, Dukas AG, Lee SL, Bernet VJ, Payne RJ, McLeod IK, Hier MP, Black MJ, Kerr PD, et al. Prediction of hypocalcemia after using 1- to 6-hour postoperative parathyroid hormone and calcium levels: an analysis of pooled individual patient data from 3 observational studies. Head Neck. 2010;32(4):427–34.PubMedGoogle Scholar
  170. 170.
    McLeod IK, Arciero C, Noordzij JP, Stojadinovic A, Peoples G, Melder PC, Langley R, Bernet V, Shriver CD. The use of rapid parathyroid hormone assay in predicting postoperative hypocalcemia after total or completion thyroidectomy. Thyroid. 2006;16(3):259–65.PubMedCrossRefGoogle Scholar
  171. 171.
    Reeve T, Thompson NW. Complications of thyroid surgery: how to avoid them, how to manage them, and observations on their possible effect on the whole patient. World J Surg. 2000;24(8):971–5.PubMedCrossRefGoogle Scholar
  172. 172.
    Mazzaferri EL, Kloos RT. Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 2001;86(4):1447–63.PubMedCrossRefGoogle Scholar
  173. 173.
    Durante C, Montesano T, Attard M, Torlontano M, Monzani F, Costante G, Meringolo D, Ferdeghini M, Tumino S, Lamartina L, et al. Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J Clin Endocrinol Metab. 2012;97(8):2748–53.PubMedCrossRefGoogle Scholar
  174. 174.
    Nascimento C, Borget I, Troalen F, Al Ghuzlan A, Deandreis D, Hartl D, Lumbroso J, Chougnet CN, Baudin E, Schlumberger M, et al. Ultrasensitive serum thyroglobulin measurement is useful for the follow-up of patients treated with total thyroidectomy without radioactive iodine ablation. Eur J Endocrinol. 2013;169(5):689–93.PubMedCrossRefGoogle Scholar
  175. 175.
    Torlontano M, Crocetti U, Augello G, D’Aloiso L, Bonfitto N, Varraso A, Dicembrino F, Modoni S, Frusciante V, Di Giorgio A, et al. Comparative evaluation of recombinant human thyrotropin-stimulated thyroglobulin levels, 131I whole-body scintigraphy, and neck ultrasonography in the follow-up of patients with papillary thyroid microcarcinoma who have not undergone radioiodine therapy. J Clin Endocrinol Metab. 2006;91(1):60–3.PubMedCrossRefGoogle Scholar
  176. 176.
    Lee JI, Chung YJ, Cho BY, Chong S, Seok JW, Park SJ. Postoperative-stimulated serum thyroglobulin measured at the time of 131I ablation is useful for the prediction of disease status in patients with differentiated thyroid carcinoma. Surgery. 2013;153(6):828–35.PubMedCrossRefGoogle Scholar
  177. 177.
    Antonelli A, Miccoli P, Fallahi P, Grosso M, Nesti C, Spinelli C, Ferrannini E. Role of neck ultrasonography in the follow-up of children operated on for thyroid papillary cancer. Thyroid. 2003;13(5):479–84.PubMedCrossRefGoogle Scholar
  178. 178.
    Rosario PW, Mineiro Filho AF, Lacerda RX, dos Santos DA, Calsolari MR. The value of diagnostic whole-body scanning and serum thyroglobulin in the presence of elevated serum thyrotropin during follow-up of anti-thyroglobulin antibody-positive patients with differentiated thyroid carcinoma who appeared to be free of disease after total thyroidectomy and radioactive iodine ablation. Thyroid. 2012;22(2):113–6.PubMedCrossRefGoogle Scholar
  179. 179.
    Bal CS, Kumar A, Chandra P, Dwivedi SN, Mukhopadhyaya S. Is chest x-ray or high-resolution computed tomography scan of the chest sufficient investigation to detect pulmonary metastasis in pediatric differentiated thyroid cancer? Thyroid. 2004;14(3):217–25.PubMedCrossRefGoogle Scholar
  180. 180.
    Barwick TD, Dhawan RT, Lewington V. Role of SPECT/CT in differentiated thyroid cancer. Nucl Med Commun. 2012;33(8):787–98.PubMedCrossRefGoogle Scholar
  181. 181.
    Kim HY, Gelfand MJ, Sharp SE. SPECT/CT imaging in children with papillary thyroid carcinoma. Pediatr Radiol. 2011;41(8):1008–12.PubMedCrossRefGoogle Scholar
  182. 182.
    Xue YL, Qiu ZL, Song HJ, Luo QY. Value of (1)(3)(1)I SPECT/CT for the evaluation of differentiated thyroid cancer: a systematic review of the literature. Eur J Nucl Med Mol Imaging. 2013;40(5):768–78.PubMedCrossRefGoogle Scholar
  183. 183.
    Hurley JR. Management of thyroid cancer: radioiodine ablation, “stunning,” and treatment of thyroglobulin-positive, (131)I scan-negative patients. Endocr Pract. 2000;6(5):401–6.PubMedCrossRefGoogle Scholar
  184. 184.
    Luster M, Lassmann M, Freudenberg LS, Reiners C. Thyroid cancer in childhood: management strategy, including dosimetry and long-term results. Hormones (Athens). 2007;6(4):269–78.CrossRefGoogle Scholar
  185. 185.
    Cohen JB, Kalinyak JE, McDougall IR. Clinical implications of the differences between diagnostic 123I and post-therapy 131I scans. Nucl Med Commun. 2004;25(2):129–34.PubMedCrossRefGoogle Scholar
  186. 186.
    Schoelwer MJ, Zimmerman D, Shore RM, Josefson JL. The use of 123I in diagnostic radioactive iodine scans in children with differentiated thyroid carcinoma. Thyroid. 2015;25(8):935–41.PubMedCrossRefGoogle Scholar
  187. 187.
    Jarzab B, Handkiewicz-Junak D, Wloch J. Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: a qualitative review. Endocr Relat Cancer. 2005;12(4):773–803.PubMedCrossRefGoogle Scholar
  188. 188.
    Clayman GL, Shellenberger TD, Ginsberg LE, Edeiken BS, El-Naggar AK, Sellin RV, Waguespack SG, Roberts DB, Mishra A, Sherman SI. Approach and safety of comprehensive central compartment dissection in patients with recurrent papillary thyroid carcinoma. Head Neck. 2009;31(9):1152–63.PubMedCrossRefGoogle Scholar
  189. 189.
    Clayman GL, Agarwal G, Edeiken BS, Waguespack SG, Roberts DB, Sherman SI. Long-term outcome of comprehensive central compartment dissection in patients with recurrent/persistent papillary thyroid carcinoma. Thyroid. 2011;21(12):1309–16.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Brink JS, van Heerden JA, McIver B, Salomao DR, Farley DR, Grant CS, Thompson GB, Zimmerman D, Hay ID. Papillary thyroid cancer with pulmonary metastases in children: long-term prognosis. Surgery. 2000;128(6):881–6; discussion 886-887.PubMedCrossRefGoogle Scholar
  191. 191.
    Pawelczak M, David R, Franklin B, Kessler M, Lam L, Shah B. Outcomes of children and adolescents with well-differentiated thyroid carcinoma and pulmonary metastases following (1)(3)(1)I treatment: a systematic review. Thyroid. 2010;20(10):1095–101.PubMedCrossRefGoogle Scholar
  192. 192.
    Dottorini ME, Vignati A, Mazzucchelli L, Lomuscio G, Colombo L. Differentiated thyroid carcinoma in children and adolescents: a 37-year experience in 85 patients. J Nucl Med. 1997;38(5):669–75.PubMedGoogle Scholar
  193. 193.
    Samuel AM, Rajashekharrao B, Shah DH. Pulmonary metastases in children and adolescents with well-differentiated thyroid cancer. J Nucl Med. 1998;39(9):1531–6.PubMedGoogle Scholar
  194. 194.
    Padovani RP, Robenshtok E, Brokhin M, Tuttle RM. Even without additional therapy, serum thyroglobulin concentrations often decline for years after total thyroidectomy and radioactive remnant ablation in patients with differentiated thyroid cancer. Thyroid. 2012;22(8):778–83.PubMedCrossRefGoogle Scholar
  195. 195.
    Chen L, Shen Y, Luo Q, Yu Y, Lu H, Zhu R. Pulmonary fibrosis following radioiodine therapy of pulmonary metastases from differentiated thyroid carcinoma. Thyroid. 2010;20(3):337–40.PubMedCrossRefGoogle Scholar
  196. 196.
    Hebestreit H, Biko J, Drozd V, Demidchik Y, Burkhardt A, Trusen A, Beer M, Reiners C. Pulmonary fibrosis in youth treated with radioiodine for juvenile thyroid cancer and lung metastases after Chernobyl. Eur J Nucl Med Mol Imaging. 2011;38(9):1683–90.PubMedCrossRefGoogle Scholar
  197. 197.
    Verburg FA, Reiners C, Hanscheid H. Approach to the patient: role of dosimetric RAI Rx in children with DTC. J Clin Endocrinol Metab. 2013;98(10):3912–9.PubMedCrossRefGoogle Scholar
  198. 198.
    Mazzaferri EL, Robbins RJ, Spencer CA, Braverman LE, Pacini F, Wartofsky L, Haugen BR, Sherman SI, Cooper DS, Braunstein GD, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 2003;88(4):1433–41.PubMedCrossRefGoogle Scholar
  199. 199.
    Schlumberger M, Pacini F, Wiersinga WM, Toft A, Smit JW, Sanchez Franco F, Lind P, Limbert E, Jarzab B, Jamar F, et al. Follow-up and management of differentiated thyroid carcinoma: a European perspective in clinical practice. Eur J Endocrinol. 2004;151(5):539–48.PubMedCrossRefGoogle Scholar
  200. 200.
    Kloos RT. Thyroid cancer recurrence in patients clinically free of disease with undetectable or very low serum thyroglobulin values. J Clin Endocrinol Metab. 2010;95(12):5241–8.PubMedCrossRefGoogle Scholar
  201. 201.
    Malandrino P, Latina A, Marescalco S, Spadaro A, Regalbuto C, Fulco RA, Scollo C, Vigneri R, Pellegriti G. Risk-adapted management of differentiated thyroid cancer assessed by a sensitive measurement of basal serum thyroglobulin. J Clin Endocrinol Metab. 2011;96(6):1703–9.PubMedCrossRefGoogle Scholar
  202. 202.
    Spencer C, Fatemi S, Singer P, Nicoloff J, Lopresti J. Serum basal thyroglobulin measured by a second-generation assay correlates with the recombinant human thyrotropin-stimulated thyroglobulin response in patients treated for differentiated thyroid cancer. Thyroid. 2010;20(6):587–95.PubMedCrossRefGoogle Scholar
  203. 203.
    Castagna MG, Brilli L, Pilli T, Montanaro A, Cipri C, Fioravanti C, Sestini F, Capezzone M, Pacini F. Limited value of repeat recombinant human thyrotropin (rhTSH)-stimulated thyroglobulin testing in differentiated thyroid carcinoma patients with previous negative rhTSH-stimulated thyroglobulin and undetectable basal serum thyroglobulin levels. J Clin Endocrinol Metab. 2008;93(1):76–81.PubMedCrossRefGoogle Scholar
  204. 204.
    Han JM, Kim WB, Yim JH, Kim WG, Kim TY, Ryu JS, Gong G, Sung TY, Yoon JH, Hong SJ, et al. Long-term clinical outcome of differentiated thyroid cancer patients with undetectable stimulated thyroglobulin level one year after initial treatment. Thyroid. 2012;22(8):784–90.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Klubo-Gwiezdzinska J, Burman KD, Van Nostrand D, Wartofsky L. Does an undetectable rhTSH-stimulated Tg level 12 months after initial treatment of thyroid cancer indicate remission? Clin Endocrinol. 2011;74(1):111–7.CrossRefGoogle Scholar
  206. 206.
    Kloos RT, Mazzaferri EL. A single recombinant human thyrotropin-stimulated serum thyroglobulin measurement predicts differentiated thyroid carcinoma metastases three to five years later. J Clin Endocrinol Metab. 2005;90(9):5047–57.PubMedCrossRefGoogle Scholar
  207. 207.
    Baudin E, Do Cao C, Cailleux AF, Leboulleux S, Travagli JP, Schlumberger M. Positive predictive value of serum thyroglobulin levels, measured during the first year of follow-up after thyroid hormone withdrawal, in thyroid cancer patients. J Clin Endocrinol Metab. 2003;88(3):1107–11.PubMedCrossRefGoogle Scholar
  208. 208.
    Miyauchi A, Kudo T, Miya A, Kobayashi K, Ito Y, Takamura Y, Higashiyama T, Fukushima M, Kihara M, Inoue H, et al. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid. 2011;21(7):707–16.PubMedCrossRefGoogle Scholar
  209. 209.
    Schaadt B, Feldt-Rasmussen U, Rasmusson B, Torring H, Foder B, Jorgensen K, Hansen HS. Assessment of the influence of thyroglobulin (Tg) autoantibodies and other interfering factors on the use of serum Tg as tumor marker in differentiated thyroid carcinoma. Thyroid. 1995;5(3):165–70.PubMedGoogle Scholar
  210. 210.
    Schaap J, Eustatia-Rutten CF, Stokkel M, Links TP, Diamant M, van der Velde EA, Romijn JA, Smit JW. Does radioiodine therapy have disadvantageous effects in non-iodine accumulating differentiated thyroid carcinoma? Clin Endocrinol. 2002;57(1):117–24.CrossRefGoogle Scholar
  211. 211.
    Dralle H, Gimm O, Simon D, Frank-Raue K, Gortz G, Niederle B, Wahl RA, Koch B, Walgenbach S, Hampel R, et al. Prophylactic thyroidectomy in 75 children and adolescents with hereditary medullary thyroid carcinoma: German and Austrian experience. World J Surg. 1998;22(7):744–50; discussion 750-741.PubMedCrossRefGoogle Scholar
  212. 212.
    Spencer C. Commentary on: implications of thyroglobulin antibody positivity in patients with differentiated thyroid cancer: a clinical position statement. Thyroid. 2013;23(10):1190–2.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Spencer CA. Clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab. 2011;96(12):3615–27.PubMedCrossRefGoogle Scholar
  214. 214.
    Verburg FA, Luster M, Cupini C, Chiovato L, Duntas L, Elisei R, Feldt-Rasmussen U, Rimmele H, Seregni E, Smit JW, et al. Implications of thyroglobulin antibody positivity in patients with differentiated thyroid cancer: a clinical position statement. Thyroid. 2013;23(10):1211–25.PubMedCrossRefGoogle Scholar
  215. 215.
    Hoofnagle AN, Roth MY. Clinical review: improving the measurement of serum thyroglobulin with mass spectrometry. J Clin Endocrinol Metab. 2013;98(4):1343–52.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Spencer C, Fatemi S. Thyroglobulin antibody (TgAb) methods – strengths, pitfalls and clinical utility for monitoring TgAb-positive patients with differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2013;27(5):701–12.PubMedCrossRefGoogle Scholar
  217. 217.
    Spencer CA, Takeuchi M, Kazarosyan M, Wang CC, Guttler RB, Singer PA, Fatemi S, LoPresti JS, Nicoloff JT. Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 1998;83(4):1121–7.PubMedGoogle Scholar
  218. 218.
    Gorges R, Maniecki M, Jentzen W, Sheu SN, Mann K, Bockisch A, Janssen OE. Development and clinical impact of thyroglobulin antibodies in patients with differentiated thyroid carcinoma during the first 3 years after thyroidectomy. Eur J Endocrinol. 2005;153(1):49–55.PubMedCrossRefGoogle Scholar
  219. 219.
    Kim WG, Yoon JH, Kim WB, Kim TY, Kim EY, Kim JM, Ryu JS, Gong G, Hong SJ, Shong YK. Change of serum antithyroglobulin antibody levels is useful for prediction of clinical recurrence in thyroglobulin-negative patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2008;93(12):4683–9.PubMedCrossRefGoogle Scholar
  220. 220.
    Seo JH, Lee SW, Ahn BC, Lee J. Recurrence detection in differentiated thyroid cancer patients with elevated serum level of antithyroglobulin antibody: special emphasis on using (18)F-FDG PET/CT. Clin Endocrinol. 2010;72(4):558–63.CrossRefGoogle Scholar
  221. 221.
    Kumar A, Shah DH, Shrihari U, Dandekar SR, Vijayan U, Sharma SM. Significance of antithyroglobulin autoantibodies in differentiated thyroid carcinoma. Thyroid. 1994;4(2):199–202.PubMedCrossRefGoogle Scholar
  222. 222.
    Chiovato L, Latrofa F, Braverman LE, Pacini F, Capezzone M, Masserini L, Grasso L, Pinchera A. Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med. 2003;139(5 Pt 1):346–51.PubMedCrossRefGoogle Scholar
  223. 223.
    Kuijt WJ, Huang SA. Children with differentiated thyroid cancer achieve adequate hyperthyrotropinemia within 14 days of levothyroxine withdrawal. J Clin Endocrinol Metab. 2005;90(11):6123–5.PubMedCrossRefGoogle Scholar
  224. 224.
    Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W, European Thyroid Cancer T. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154(6):787–803.PubMedCrossRefGoogle Scholar
  225. 225.
    Tuttle RM, Brokhin M, Omry G, Martorella AJ, Larson SM, Grewal RK, Fleisher M, Robbins RJ. Recombinant human TSH-assisted radioactive iodine remnant ablation achieves short-term clinical recurrence rates similar to those of traditional thyroid hormone withdrawal. J Nucl Med. 2008;49(5):764–70.PubMedCrossRefGoogle Scholar
  226. 226.
    Hugo J, Robenshtok E, Grewal R, Larson S, Tuttle RM. Recombinant human thyroid stimulating hormone-assisted radioactive iodine remnant ablation in thyroid cancer patients at intermediate to high risk of recurrence. Thyroid. 2012;22(10):1007–15.PubMedCrossRefGoogle Scholar
  227. 227.
    Hung W, Sarlis NJ. Current controversies in the management of pediatric patients with well-differentiated nonmedullary thyroid cancer: a review. Thyroid. 2002;12(8):683–702.PubMedCrossRefGoogle Scholar
  228. 228.
    Dinauer C, Francis GL. Thyroid cancer in children. Endocrinol Metab Clin N Am. 2007;36(3):779–806. vii.CrossRefGoogle Scholar
  229. 229.
    Benua RS, Cicale NR, Sonenberg M, Rawson RW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Therapy, Nucl Med. 1962;87:171–82.Google Scholar
  230. 230.
    Tuttle RM, Leboeuf R, Robbins RJ, Qualey R, Pentlow K, Larson SM, Chan CY. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med. 2006;47(10):1587–91.PubMedGoogle Scholar
  231. 231.
    Lassmann M, Hanscheid H, Verburg FA, Luster M. The use of dosimetry in the treatment of differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2011;55(2):107–15.PubMedGoogle Scholar
  232. 232.
    Chen MK, Cheng DW. What is the role of dosimetry in patients with advanced thyroid cancer? Curr Opin Oncol. 2015;27(1):33–7.PubMedCrossRefGoogle Scholar
  233. 233.
    Tuttle RM, Grewal RK, Larson SM. Radioactive iodine therapy in poorly differentiated thyroid cancer. Nat Clin Pract Oncol. 2007;4(11):665–8.PubMedCrossRefGoogle Scholar
  234. 234.
    Wang M, Wu WD, Chen GM, Chou SL, Dai XM, Xu JM, Peng ZH. Could tumor size be a predictor for papillary thyroid microcarcinoma: a retrospective cohort study. Asian Pac J Cancer Prev. 2015;16(18):8625–8.PubMedCrossRefGoogle Scholar
  235. 235.
    Pazaitou-Panayiotou K, Iliadou PK, Mandanas S, Vasileiadis T, Mitsakis P, Tziomalos K, Alevizaki M, Patakiouta F. Papillary thyroid carcinomas in patients under 21 years of age: clinical and histologic characteristics of tumors </=10 mm. J Pediatr. 2015;166(2):451–6. e452.PubMedCrossRefGoogle Scholar
  236. 236.
    Wreesmann VB, Ghossein RA, Hezel M, Banerjee D, Shaha AR, Tuttle RM, Shah JP, Rao PH, Singh B. Follicular variant of papillary thyroid carcinoma: genome-wide appraisal of a controversial entity. Genes Chromosomes Cancer. 2004;40(4):355–64.PubMedCrossRefGoogle Scholar
  237. 237.
    Fryknas M, Wickenberg-Bolin U, Goransson H, Gustafsson MG, Foukakis T, Lee JJ, Landegren U, Hoog A, Larsson C, Grimelius L, et al. Molecular markers for discrimination of benign and malignant follicular thyroid tumors. Tumour Biol. 2006;27(4):211–20.PubMedCrossRefGoogle Scholar
  238. 238.
    Foukakis T, AY A, Wallin G, Geli J, Forsberg L, Clifton-Bligh R, Robinson BG, Lui WO, Zedenius J, Larsson C. The Ras effector NORE1A is suppressed in follicular thyroid carcinomas with a PAX8-PPARgamma fusion. J Clin Endocrinol Metab. 2006;91(3):1143–9.PubMedCrossRefGoogle Scholar
  239. 239.
    McIver B, Grebe SK, Eberhardt NL. The PAX8/PPAR gamma fusion oncogene as a potential therapeutic target in follicular thyroid carcinoma. Curr Drug Targets. 2004;4(3):221–34.Google Scholar
  240. 240.
    Taylor T, Specker B, Robbins J, Sperling M, Ho M, Ain K, Bigos ST, Brierley J, Cooper D, Haugen B, et al. Outcome after treatment of high-risk papillary and non-Hurthle-cell follicular thyroid carcinoma. Ann Intern Med. 1998;129(8):622–7.PubMedCrossRefGoogle Scholar
  241. 241.
    Grubbs EG, Rich TA, Li G, Sturgis EM, Younes MN, Myers JN, Edeiken-Monroe B, Fornage BD, Monroe DP, Staerkel GA, et al. Recent advances in thyroid cancer. Curr Probl Surg. 2008;45(3):156–250.PubMedCrossRefGoogle Scholar
  242. 242.
    Asari R, Koperek O, Scheuba C, Riss P, Kaserer K, Hoffmann M, Niederle B. Follicular thyroid carcinoma in an iodine-replete endemic goiter region: a prospectively collected, retrospectively analyzed clinical trial. Ann Surg. 2009;249(6):1023–31.PubMedCrossRefGoogle Scholar
  243. 243.
    Zou CC, Zhao ZY, Liang L. Childhood minimally invasive follicular carcinoma: clinical features and immunohistochemistry analysis. J Paediatr Child Health. 2010;46(4):166–70.PubMedCrossRefGoogle Scholar
  244. 244.
    Ito Y, Miyauchi A, Tomoda C, Hirokawa M, Kobayashi K, Miya A. Prognostic significance of patient age in minimally and widely invasive follicular thyroid carcinoma: investigation of three age groups. Endocr J. 2014;61(3):265–71.PubMedCrossRefGoogle Scholar
  245. 245.
    Enomoto K, Enomoto Y, Uchino S, Yamashita H, Noguchi S. Follicular thyroid cancer in children and adolescents: clinicopathologic features, long-term survival, and risk factors for recurrence. Endocr J. 2013;60(5):629–35.PubMedCrossRefGoogle Scholar
  246. 246.
    Biondi B, Filetti S, Schlumberger M. Thyroid-hormone therapy and thyroid cancer: a reassessment. Nat Clin Pract Endocrinol Metab. 2005;1(1):32–40.PubMedCrossRefGoogle Scholar
  247. 247.
    Bauer AJ. Approach to the pediatric patient with Graves’ disease: when is definitive therapy warranted? J Clin Endocrinol Metab. 2011;96(3):580–8.PubMedCrossRefGoogle Scholar
  248. 248.
    Rivkees SA. Pediatric Graves’ disease: controversies in management. Horm Res Paediatr. 2010;74(5):305–11.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Pacini F, Molinaro E, Castagna MG, Agate L, Elisei R, Ceccarelli C, Lippi F, Taddei D, Grasso L, Pinchera A. Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2003;88(8):3668–73.PubMedCrossRefGoogle Scholar
  250. 250.
    Robbins RJ, Chon JT, Fleisher M, Larson SM, Tuttle RM. Is the serum thyroglobulin response to recombinant human thyrotropin sufficient, by itself, to monitor for residual thyroid carcinoma? J Clin Endocrinol Metab. 2002;87(7):3242–7.PubMedCrossRefGoogle Scholar
  251. 251.
    Dadu R, Cabanillas ME. Optimizing therapy for radioactive iodine-refractory differentiated thyroid cancer: current state of the art and future directions. Minerva Endocrinol. 2012;37(4):335–56.PubMedPubMedCentralGoogle Scholar
  252. 252.
    Bannas P, Derlin T, Groth M, Apostolova I, Adam G, Mester J, Klutmann S. Can (18)F-FDG-PET/CT be generally recommended in patients with differentiated thyroid carcinoma and elevated thyroglobulin levels but negative I-131 whole body scan? Ann Nucl Med. 2012;26(1):77–85.PubMedCrossRefGoogle Scholar
  253. 253.
    Dong MJ, Liu ZF, Zhao K, Ruan LX, Wang GL, Yang SY, Sun F, Luo XG. Value of 18F-FDG-PET/PET-CT in differentiated thyroid carcinoma with radioiodine-negative whole-body scan: a meta-analysis. Nucl Med Commun. 2009;30(8):639–50.PubMedCrossRefGoogle Scholar
  254. 254.
    Miller ME, Chen Q, Elashoff D, Abemayor E, St John M. Positron emission tomography and positron emission tomography-CT evaluation for recurrent papillary thyroid carcinoma: meta-analysis and literature review. Head Neck. 2011;33(4):562–5.PubMedCrossRefGoogle Scholar
  255. 255.
    Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, Tuttle RM, Drucker W, Larson SM. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91(2):498–505.PubMedCrossRefGoogle Scholar
  256. 256.
    Armstrong S, Worsley D, Blair GK. Pediatric surgical images: PET evaluation of papillary thyroid carcinoma recurrence. J Pediatr Surg. 2002;37(11):1648–9.PubMedCrossRefGoogle Scholar
  257. 257.
    Covell LL, Ganti AK. Treatment of advanced thyroid cancer: role of molecularly targeted therapies. Target Oncol. 2015;10(3):311–24.PubMedCrossRefGoogle Scholar
  258. 258.
    Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, de la Fouchardiere C, Pacini F, Paschke R, Shong YK, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319–28.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, Habra MA, Newbold K, Shah MH, Hoff AO, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–30.PubMedCrossRefGoogle Scholar
  260. 260.
    Gruber JJ, Colevas AD. Differentiated thyroid cancer: focus on emerging treatments for radioactive iodine-refractory patients. Oncologist. 2015;20(2):113–26.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Worden F. Treatment strategies for radioactive iodine-refractory differentiated thyroid cancer. Ther Adv Med Oncol. 2014;6(6):267–79.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Weitzman SP, Cabanillas ME. The treatment landscape in thyroid cancer: a focus on cabozantinib. Cancer Manag Res. 2015;7:265–78.PubMedPubMedCentralGoogle Scholar
  263. 263.
    Kim A, Widemann BC, Krailo M, Jayaprakash N, Fox E, Weigel B, Blaney SM. Phase 2 trial of sorafenib in children and young adults with refractory solid tumors: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2015;62(9):1562–6.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Widemann BC, Kim A, Fox E, Baruchel S, Adamson PC, Ingle AM, Glade Bender J, Burke M, Weigel B, Stempak D, et al. A phase I trial and pharmacokinetic study of sorafenib in children with refractory solid tumors or leukemias: a Children’s Oncology Group Phase I Consortium report. Clin Cancer Res. 2012;18(21):6011–22.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Iyer P, Mayer JL, Ewig JM. Response to sorafenib in a pediatric patient with papillary thyroid carcinoma with diffuse nodular pulmonary disease requiring mechanical ventilation. Thyroid. 2014;24(1):169–74.PubMedCrossRefGoogle Scholar
  266. 266.
    Waguespack SG, Sherman SI, Williams MD, Clayman GL, Herzog CE. The successful use of sorafenib to treat pediatric papillary thyroid carcinoma. Thyroid. 2009;19(4):407–12.PubMedCrossRefGoogle Scholar
  267. 267.
    Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, Pentlow KS, Zanzonico PB, Haque S, Gavane S, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32.PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Carlson KM, Dou S, Chi D, Scavarda N, Toshima K, Jackson CE, Wells SA Jr, Goodfellow PJ, Donis-Keller H. Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci U S A. 1994;91(4):1579–83.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC, Howe JR, Moley JF, Goodfellow P, Wells SA Jr. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet. 1993;2(7):851–6.PubMedCrossRefGoogle Scholar
  270. 270.
    Eng C, Clayton D, Schuffenecker I, Lenoir G, Cote G, Gagel RF, van Amstel HK, Lips CJ, Nishisho I, Takai SI, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA. 1996;276(19):1575–9.PubMedCrossRefGoogle Scholar
  271. 271.
    Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, Pasini B, Hoppener JW, van Amstel HK, Romeo G, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature. 1994;367(6461):375–6.PubMedCrossRefGoogle Scholar
  272. 272.
    Margraf RL, Crockett DK, Krautscheid PM, Seamons R, Calderon FR, Wittwer CT, Mao R. Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Hum Mutat. 2009;30(4):548–56.PubMedCrossRefGoogle Scholar
  273. 273.
    Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, Love DR, Mole SE, Moore JK, Papi L, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363(6428):458–60.PubMedCrossRefGoogle Scholar
  274. 274.
    Waguespack SG, Rich TA, Perrier ND, Jimenez C, Cote GJ. Management of medullary thyroid carcinoma and MEN2 syndromes in childhood. Nat Rev Endocrinol. 2011;7(10):596–607.PubMedCrossRefGoogle Scholar
  275. 275.
    Frank-Raue K, Raue F. Hereditary medullary thyroid cancer genotype-phenotype correlation. Recent Results Cancer Res. 2015;204:139–56.PubMedCrossRefGoogle Scholar
  276. 276.
    Baloch ZW, LiVolsi VA. C-cells and their associated lesions and conditions: a pathologists perspective. Turk Patoloji Derg. 2015;31(Suppl 1):60–79.PubMedGoogle Scholar
  277. 277.
    Machens A, Niccoli-Sire P, Hoegel J, Frank-Raue K, van Vroonhoven TJ, Roeher HD, Wahl RA, Lamesch P, Raue F, Conte-Devolx B, et al. Early malignant progression of hereditary medullary thyroid cancer. N Engl J Med. 2003;349(16):1517–25.PubMedCrossRefGoogle Scholar
  278. 278.
    Wolfe HJ, Melvin KE, Cervi-Skinner SJ, Saadi AA, Juliar JF, Jackson CE, Tashjian AH Jr. C-cell hyperplasia preceding medullary thyroid carcinoma. N Engl J Med. 1973;289(9):437–41.PubMedCrossRefGoogle Scholar
  279. 279.
    Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, Conte-Devolx B, Falchetti A, Gheri RG, Libroia A, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab. 2001;86(12):5658–71.PubMedCrossRefGoogle Scholar
  280. 280.
    Kloos RT, Eng C, Evans DB, Francis GL, Gagel RF, Gharib H, Moley JF, Pacini F, Ringel MD, Schlumberger M, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid. 2009;19(6):565–612.PubMedCrossRefGoogle Scholar
  281. 281.
    Brauckhoff M, Machens A, Lorenz K, Bjoro T, Varhaug JE, Dralle H. Surgical curability of medullary thyroid cancer in multiple endocrine neoplasia 2B: a changing perspective. Ann Surg. 2014;259(4):800–6.PubMedCrossRefGoogle Scholar
  282. 282.
    Frohnauer MK, Decker RA. Update on the MEN 2A c804 RET mutation: is prophylactic thyroidectomy indicated? Surgery. 2000;128(6):1052–7;discussion 1057–1058.PubMedCrossRefGoogle Scholar
  283. 283.
    Mukherjee S, Zakalik D. RET codon 804 mutations in multiple endocrine neoplasia 2: genotype-phenotype correlations and implications in clinical management. Clin Genet. 2011;79(1):1–16.PubMedCrossRefGoogle Scholar
  284. 284.
    Steiner AL, Goodman AD, Powers SR. Study of a kindred with pheochromocytoma, medullary thyroid carcinoma, hyperparathyroidism and Cushing’s disease: multiple endocrine neoplasia, type 2. Medicine (Baltimore). 1968;47(5):371–409.CrossRefGoogle Scholar
  285. 285.
    Machens A, Lorenz K, Dralle H. Constitutive RET tyrosine kinase activation in hereditary medullary thyroid cancer: clinical opportunities. J Intern Med. 2009;266(1):114–25.PubMedCrossRefGoogle Scholar
  286. 286.
    Romei C, Tacito A, Molinaro E, Agate L, Bottici V, Viola D, Matrone A, Biagini A, Casella F, Ciampi R, et al. Twenty years of lesson learning: how does the RET genetic screening test impact the clinical management of medullary thyroid cancer? Clin Endocrinol. 2015;82(6):892–9.CrossRefGoogle Scholar
  287. 287.
    Frank-Raue K, Rondot S, Raue F. Molecular genetics and phenomics of RET mutations: impact on prognosis of MTC. Mol Cell Endocrinol. 2010;322(1–2):2–7.PubMedCrossRefGoogle Scholar
  288. 288.
    Rich TA, Feng L, Busaidy N, Cote GJ, Gagel RF, Hu M, Jimenez C, Lee JE, Perrier N, Sherman SI, et al. Prevalence by age and predictors of medullary thyroid cancer in patients with lower risk germline RET proto-oncogene mutations. Thyroid. 2014;24(7):1096–106.PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Brauckhoff M, Gimm O, Weiss CL, Ukkat J, Sekulla C, Brauckhoff K, Thanh PN, Dralle H. Multiple endocrine neoplasia 2B syndrome due to codon 918 mutation: clinical manifestation and course in early and late onset disease. World J Surg. 2004;28(12):1305–11.PubMedCrossRefGoogle Scholar
  290. 290.
    Brauckhoff M, Machens A, Hess S, Lorenz K, Gimm O, Brauckhoff K, Sekulla C, Dralle H. Premonitory symptoms preceding metastatic medullary thyroid cancer in MEN 2B: an exploratory analysis. Surgery. 2008;144(6):1044–50; discussion 1050-1043.PubMedCrossRefGoogle Scholar
  291. 291.
    Carney JA, Bianco AJ Jr, Sizemore GW, Hayles AB. Multiple endocrine neoplasia with skeletal manifestations. J Bone Joint Surg Am. 1981;63(3):405–10.PubMedCrossRefGoogle Scholar
  292. 292.
    O’Riordain DS, O’Brien T, Crotty TB, Gharib H, Grant CS, van Heerden JA. Multiple endocrine neoplasia type 2B: more than an endocrine disorder. Surgery. 1995;118(6):936–42.PubMedCrossRefGoogle Scholar
  293. 293.
    Jasim S, Ying AK, Waguespack SG, Rich TA, Grubbs EG, Jimenez C, MI H, Cote G, Habra MA. Multiple endocrine neoplasia type 2B with a RET proto-oncogene A883F mutation displays a more indolent form of medullary thyroid carcinoma compared with a RET M918T mutation. Thyroid. 2011;21(2):189–92.PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Frank-Raue K, Buhr H, Dralle H, Klar E, Senninger N, Weber T, Rondot S, Hoppner W, Raue F. Long-term outcome in 46 gene carriers of hereditary medullary thyroid carcinoma after prophylactic thyroidectomy: impact of individual RET genotype. Eur J Endocrinol. 2006;155(2):229–36.PubMedCrossRefGoogle Scholar
  295. 295.
    Rohmer V, Vidal-Trecan G, Bourdelot A, Niccoli P, Murat A, Wemeau JL, Borson-Chazot F, Schvartz C, Tabarin A, Chabre O, et al. Prognostic factors of disease-free survival after thyroidectomy in 170 young patients with a RET germline mutation: a multicenter study of the Groupe Francais d’Etude des Tumeurs Endocrines. J Clin Endocrinol Metab. 2011;96(3):E509–18.PubMedCrossRefGoogle Scholar
  296. 296.
    Skinner MA, Moley JA, Dilley WG, Owzar K, Debenedetti MK, Wells SA Jr. Prophylactic thyroidectomy in multiple endocrine neoplasia type 2A. N Engl J Med. 2005;353(11):1105–13.PubMedCrossRefGoogle Scholar
  297. 297.
    Waguespack SG, Rich TA. Multiple endocrine neoplasia [corrected] syndrome type 2B in early childhood: long-term benefit of prophylactic thyroidectomy. Cancer. 2010;116(9):2284.PubMedGoogle Scholar
  298. 298.
    Morris LF, Waguespack SG, Edeiken-Monroe BS, Lee JE, Rich TA, Ying AK, Warneke CL, Evans DB, Perrier ND, Grubbs EG. Ultrasonography should not guide the timing of thyroidectomy in pediatric patients diagnosed with multiple endocrine neoplasia syndrome 2A through genetic screening. Ann Surg Oncol. 2013;20(1):53–9.PubMedCrossRefGoogle Scholar
  299. 299.
    Zenaty D, Aigrain Y, Peuchmaur M, Philippe-Chomette P, Baumann C, Cornelis F, Hugot JP, Chevenne D, Barbu V, Guillausseau PJ, et al. Medullary thyroid carcinoma identified within the first year of life in children with hereditary multiple endocrine neoplasia type 2A (codon 634) and 2B. Eur J Endocrinol. 2009;160(5):807–13.PubMedCrossRefGoogle Scholar
  300. 300.
    O’Riordain DS, O’Brien T, Weaver AL, Gharib H, Hay ID, Grant CS, van Heerden JA. Medullary thyroid carcinoma in multiple endocrine neoplasia types 2A and 2B. Surgery. 1994;116(6):1017–23.PubMedGoogle Scholar
  301. 301.
    Modigliani E, Cohen R, Campos JM, Conte-Devolx B, Maes B, Boneu A, Schlumberger M, Bigorgne JC, Dumontier P, Leclerc L, et al. Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 899 patients. The GETC Study Group. Groupe d’etude des tumeurs a calcitonine. Clin Endocrinol. 1998;48(3):265–73.CrossRefGoogle Scholar
  302. 302.
    Leboulleux S, Travagli JP, Caillou B, Laplanche A, Bidart JM, Schlumberger M, Baudin E. Medullary thyroid carcinoma as part of a multiple endocrine neoplasia type 2B syndrome: influence of the stage on the clinical course. Cancer. 2002;94(1):44–50.PubMedCrossRefGoogle Scholar
  303. 303.
    Wray CJ, Rich TA, Waguespack SG, Lee JE, Perrier ND, Evans DB. Failure to recognize multiple endocrine neoplasia 2B: more common than we think? Ann Surg Oncol. 2008;15(1):293–301.PubMedCrossRefGoogle Scholar
  304. 304.
    Abi-Raad R, Virk RK, Dinauer CA, Prasad A, Morotti RA, Breuer CK, Sosa JA, Udelsman R, Rivkees SA, Prasad ML. C-cell neoplasia in asymptomatic carriers of RET mutation in extracellular cysteine-rich and intracellular tyrosine kinase domain. Hum Pathol. 2015;46(8):1121–8.PubMedCrossRefGoogle Scholar
  305. 305.
    Lifante JC, Blanchard C, Mirallie E, David A, Peix JL. Role of preoperative basal calcitonin levels in the timing of prophylactic thyroidectomy in patients with germline RET mutations. World J Surg. 2014;38(3):576–81.PubMedCrossRefGoogle Scholar
  306. 306.
    Pelizzo MR, Torresan F, Boschin IM, Nacamulli D, Pennelli G, Barollo S, Rubello D, Mian C. Early, prophylactic thyroidectomy in hereditary medullary thyroid carcinoma: a 26-year monoinstitutional experience. Am J Clin Oncol. 2015;38(5):508–13.PubMedCrossRefGoogle Scholar
  307. 307.
    Giraudet AL, Vanel D, Leboulleux S, Auperin A, Dromain C, Chami L, Ny Tovo N, Lumbroso J, Lassau N, Bonniaud G, et al. Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. J Clin Endocrinol Metab. 2007;92(11):4185–90.PubMedCrossRefGoogle Scholar
  308. 308.
    Laure Giraudet A, Al Ghulzan A, Auperin A, Leboulleux S, Chehboun A, Troalen F, Dromain C, Lumbroso J, Baudin E, Schlumberger M. Progression of medullary thyroid carcinoma: assessment with calcitonin and carcinoembryonic antigen doubling times. Eur J Endocrinol. 2008;158(2):239–46.PubMedCrossRefGoogle Scholar
  309. 309.
    Fox E, Widemann BC, Chuk MK, Marcus L, Aikin A, Whitcomb PO, Merino MJ, Lodish M, Dombi E, Steinberg SM, et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin Cancer Res. 2013;19(15):4239–48.PubMedPubMedCentralCrossRefGoogle Scholar
  310. 310.
    Robbins RJ, Srivastava S, Shaha A, Ghossein R, Larson SM, Fleisher M, Tuttle RM. Factors influencing the basal and recombinant human thyrotropin-stimulated serum thyroglobulin in patients with metastatic thyroid carcinoma. J Clin Endocrinol Metab. 2004;89(12):6010–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andrew J. Bauer
    • 1
  • Steven G. Waguespack
    • 2
  • Amelia Grover
    • 3
  • Gary L. Francis
    • 4
  1. 1.The Thyroid Center; Pediatrics, Division of Endocrinology and DiabetesThe Children’s Hospital of Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA
  2. 2.Endocrine Neoplasia and Hormonal DisordersThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Department of Surgical OncologyVirginia Commonwealth University, Massey Cancer CenterRichmondUSA
  4. 4.Pediatrics, Children’s Hospital of Richmond at Virginia Commonwealth UniversityRichmondUSA

Personalised recommendations