Cushing Syndrome in Childhood

  • Maya Lodish
  • Margaret F. Keil
  • Constantine A. Stratakis


Cushing syndrome is a multisystem disorder resulting from the body’s prolonged exposure to excess glucocorticoids. It is characterized by truncal obesity, growth deceleration, striae, muscle weakness, and hypertension. Most commonly, Cushing syndrome in childhood results from the exogenous administration of glucocorticoids. In this chapter, we present the causes and discuss the treatment of endogenous Cushing syndrome. The most common cause of endogenous Cushing syndrome in children is adrenocorticotropin overproduction from a pituitary adenoma, known as Cushing disease, accounts for approximately 75% of all cases of Cushing syndrome in children older than 7 years. Cushing syndrome may also be due to adrenal hypersecretion of cortisol secondary to carcinoma, adenoma, or hyperplasia, especially in younger children. Finally, the most infrequent form of Cushing syndrome is due to ectopic secretion of adrenocorticotropin and/or corticotropin releasing factor. Genetic causes of Cushing syndrome are increasingly identified, including somatic and germline mutations. Early identification and treatment of Cushing syndrome is imperative for successful treatment and optimization of growth and cardiovascular health.


Cushing syndrome Adrenal Pituitary ACTH dependent ACTH independent Adenoma Tumor Hyperplasia Cancer Corticotropinoma 


  1. 1.
    Magiakou MA, Mastorakos G, Oldfield EH, Gomez MT, Doppman JL, Cutler GB Jr, et al. Cushing’s syndrome in children and adolescents. Presentation, diagnosis, and therapy. N Engl J Med. 1994;331(10):629–36. Epub 1994/09/08.CrossRefGoogle Scholar
  2. 2.
    Lodish MB, Sinaii N, Patronas N, Batista DL, Keil M, Samuel J, et al. Blood pressure in pediatric patients with Cushing syndrome. J Clin Endocrinol Metab. 2009;94(6):2002–8. Epub 2009/03/19.CrossRefGoogle Scholar
  3. 3.
    Tsigos C, Chrousos GP. Differential diagnosis and management of Cushing’s syndrome. Annu Rev Med. 1996;47:443–61. Epub 1996/01/01.CrossRefGoogle Scholar
  4. 4.
    Orth DN. Cushing’s syndrome. N Engl J Med. 1995;332(12):791–803. Epub 1995/03/23.CrossRefGoogle Scholar
  5. 5.
    Libuit LG, Karageorgiadis AS, Sinaii N, Nguyen May NM, Keil MF, Lodish MB, et al. A gender-dependent analysis of Cushing’s disease in childhood: pre- and postoperative follow-up. Clin Endocrinol. 2015;83(1):72–7. Epub 2014/11/13.CrossRefGoogle Scholar
  6. 6.
    Karageorgiadis AS, Papadakis GZ, Biro J, Keil MF, Lyssikatos C, Quezado MM, et al. Ectopic adrenocorticotropic hormone and corticotropin-releasing hormone co-secreting tumors in children and adolescents causing cushing syndrome: a diagnostic dilemma and how to solve it. J Clin Endocrinol Metab. 2015;100(1):141–8. Epub 2014/10/08.CrossRefGoogle Scholar
  7. 7.
    Stratakis CA. Cushing syndrome caused by adrenocortical tumors and hyperplasias (corticotropin- independent Cushing syndrome). Endocr Dev. 2008;13:117–32. Epub 2008/05/22.CrossRefGoogle Scholar
  8. 8.
    Stratakis CA, Kirschner LS. Clinical and genetic analysis of primary bilateral adrenal diseases (micro- and macronodular disease) leading to Cushing syndrome. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 1998;30(6–7):456–63. Epub 1998/08/07.CrossRefGoogle Scholar
  9. 9.
    Ribeiro RC, Pinto EM, Zambetti GP, Rodriguez-Galindo C. The International Pediatric Adrenocortical Tumor Registry initiative: contributions to clinical, biological, and treatment advances in pediatric adrenocortical tumors. Mol Cell Endocrinol. 2012;351(1):37–43. Epub 2011/11/02.CrossRefGoogle Scholar
  10. 10.
    Gunther DF, Bourdeau I, Matyakhina L, Cassarino D, Kleiner DE, Griffin K, et al. Cyclical Cushing syndrome presenting in infancy: an early form of primary pigmented nodular adrenocortical disease, or a new entity? J Clin Endocrinol Metab. 2004;89(7):3173–82. Epub 2004/07/09.CrossRefGoogle Scholar
  11. 11.
    Assie G, Libe R, Espiard S, Rizk-Rabin M, Guimier A, Luscap W, et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N Engl J Med. 2013;369(22):2105–14. Epub 2013/11/29.CrossRefGoogle Scholar
  12. 12.
    Carney JA, Young WF, Stratakis CA. Primary bimorphic adrenocortical disease: cause of hypercortisolism in McCune-Albright syndrome. Am J Surg Pathol. 2011;35(9):1311–26. Epub 2011/08/13.CrossRefGoogle Scholar
  13. 13.
    Carney JA, Ho J, Kitsuda K, Young WF Jr, Stratakis CA. Massive neonatal adrenal enlargement due to cytomegaly, persistence of the transient cortex, and hyperplasia of the permanent cortex: findings in Cushing syndrome associated with hemihypertrophy. Am J Surg Pathol. 2012;36(10):1452–63. Epub 2012/09/18.CrossRefGoogle Scholar
  14. 14.
    Brown RJ, Kelly MH, Collins MT. Cushing syndrome in the McCune-Albright syndrome. J Clin Endocrinol Metab. 2010;95(4):1508–15. Epub 2010/02/17.CrossRefGoogle Scholar
  15. 15.
    Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet. 2015;386(9996):913–27. Epub 2015/05/26.CrossRefGoogle Scholar
  16. 16.
    Lodish M, Stratakis CA. A genetic and molecular update on adrenocortical causes of Cushing syndrome. Nat Rev Endocrinol. 2016;12(5):255–62. Epub 2016/03/12.CrossRefGoogle Scholar
  17. 17.
    Hsiao HP, Kirschner LS, Bourdeau I, Keil MF, Boikos SA, Verma S, et al. Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. J Clin Endocrinol Metab. 2009;94(8):2930–7. Epub 2009/06/11.CrossRefGoogle Scholar
  18. 18.
    Faucz FR, Zilbermint M, Lodish MB, Szarek E, Trivellin G, Sinaii N, et al. Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) gene: a clinical and genetic investigation. J Clin Endocrinol Metab. 2014;99(6):E1113–9. Epub 2014/03/08.CrossRefGoogle Scholar
  19. 19.
    Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS, et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet. 2000;26(1):89–92. Epub 2000/09/06.CrossRefGoogle Scholar
  20. 20.
    Horvath A, Boikos S, Giatzakis C, Robinson-White A, Groussin L, Griffin KJ, et al. A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet. 2006;38(7):794–800. Epub 2006/06/13.CrossRefGoogle Scholar
  21. 21.
    Horvath A, Mericq V, Stratakis CA. Mutation in PDE8B, a cyclic AMP-specific phosphodiesterase in adrenal hyperplasia. N Engl J Med. 2008;358(7):750–2. Epub 2008/02/15.CrossRefGoogle Scholar
  22. 22.
    Beuschlein F, Fassnacht M, Assie G, Calebiro D, Stratakis CA, Osswald A, et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N Engl J Med. 2014;370(11):1019–28. Epub 2014/02/28.CrossRefGoogle Scholar
  23. 23.
    Lodish MB, Yuan B, Levy I, Braunstein GD, Lyssikatos C, Salpea P, et al. Germline PRKACA amplification causes variable phenotypes that may depend on the extent of the genomic defect: molecular mechanisms and clinical presentations. Eur J Endocrinol/Eur Fed Endocr Soc. 2015;172(6):803–11. Epub 2015/05/01.CrossRefGoogle Scholar
  24. 24.
    Stratakis CA, Tichomirowa MA, Boikos S, Azevedo MF, Lodish M, Martari M, et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin Genet. 2010;78(5):457–63. Epub 2010/05/29.CrossRefGoogle Scholar
  25. 25.
    Perez-Rivas LG, Theodoropoulou M, Ferrau F, Nusser C, Kawaguchi K, Stratakis CA, et al. The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease. J Clin Endocrinol Metab. 2015;100(7):E997–1004. Epub 2015/05/06.CrossRefGoogle Scholar
  26. 26.
    Reincke M, Sbiera S, Hayakawa A, Theodoropoulou M, Osswald A, Beuschlein F, et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet. 2015;47(1):31–8. Epub 2014/12/09.CrossRefGoogle Scholar
  27. 27.
    Magiakou MA, Chrousos GP. Cushing’s syndrome in children and adolescents: current diagnostic and therapeutic strategies. J Endocrinol Investig. 2002;25(2):181–94. Epub 2002/04/04.CrossRefGoogle Scholar
  28. 28.
    Afshari A, Ardeshirpour Y, Lodish MB, Gourgari E, Sinaii N, Keil M, et al. Facial plethora: modern technology for quantifying an ancient clinical sign and its use in Cushing syndrome. J Clin Endocrinol Metab. 2015;100(10):3928–33. Epub 2015/08/25.CrossRefGoogle Scholar
  29. 29.
    Keil MF, Graf J, Gokarn N, Stratakis CA. Anthropometric measures and fasting insulin levels in children before and after cure of Cushing syndrome. Clin Nutr. 2012;31(3):359–63. Epub 2011/12/14.CrossRefGoogle Scholar
  30. 30.
    Rahman SH, Papadakis GZ, Keil MF, Faucz FR, Lodish MB, Stratakis CA. Kidney stones as an underrecognized clinical sign in pediatric Cushing disease. J Pediatr. 2016;170:273–7 e1. Epub 2015/12/26.CrossRefGoogle Scholar
  31. 31.
    Lodish MB, Hsiao HP, Serbis A, Sinaii N, Rothenbuhler A, Keil MF, et al. Effects of Cushing disease on bone mineral density in a pediatric population. J Pediatr. 2010;156(6):1001–5. Epub 2010/03/13.CrossRefGoogle Scholar
  32. 32.
    Gkourogianni A, Lodish MB, Zilbermint M, Lyssikatos C, Belyavskaya E, Keil MF, et al. Death in pediatric Cushing syndrome is uncommon but still occurs. Eur J Pediatr. 2015;174(4):501–7. Epub 2014/09/23.CrossRefGoogle Scholar
  33. 33.
    Dekkers OM, Horvath-Puho E, Jorgensen JO, Cannegieter SC, Ehrenstein V, Vandenbroucke JP, et al. Multisystem morbidity and mortality in Cushing’s syndrome: a cohort study. J Clin Endocrinol Metab. 2013;98(6):2277–84. Epub 2013/03/28.CrossRefGoogle Scholar
  34. 34.
    Lonser RR, Wind JJ, Nieman LK, Weil RJ, DeVroom HL, Oldfield EH. Outcome of surgical treatment of 200 children with Cushing’s disease. J Clin Endocrinol Metab. 2013;98(3):892–901. Epub 2013/02/02.CrossRefGoogle Scholar
  35. 35.
    Bornstein SR, Stratakis CA, Chrousos GP. Adrenocortical tumors: recent advances in basic concepts and clinical management. Ann Intern Med. 1999;130(9):759–71. Epub 1999/06/05.CrossRefGoogle Scholar
  36. 36.
    Batista DL, Riar J, Keil M, Stratakis CA. Diagnostic tests for children who are referred for the investigation of Cushing syndrome. Pediatrics. 2007;120(3):e575–86. Epub 2007/08/19.CrossRefGoogle Scholar
  37. 37.
    Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, et al. The diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008;93(5):1526–40. Epub 2008/03/13.CrossRefGoogle Scholar
  38. 38.
    Hawley JM, Keevil BG. Endogenous glucocorticoid analysis by liquid chromatography-tandem mass spectrometry in routine clinical laboratories. J Steroid Biochem Mol Biol. 2016;162:27–40. Epub 2016/05/22.CrossRefGoogle Scholar
  39. 39.
    Yanovski JA, Cutler GB Jr, Chrousos GP, Nieman LK. Corticotropin-releasing hormone stimulation following low-dose dexamethasone administration. A new test to distinguish Cushing’s syndrome from pseudo-Cushing’s states. JAMA. 1993;269(17):2232–8. Epub 1993/05/05.CrossRefGoogle Scholar
  40. 40.
    ASPREE Investigator Group. Study design of ASPirin in Reducing Events in the Elderly (ASPREE): a randomized, controlled trial. Contemp Clin Trials. 2013;36(2):555–64. Epub 2013/10/12.Google Scholar
  41. 41.
    Batista DL, Courcoutsakis N, Riar J, Keil MF, Stratakis CA. Severe obesity confounds the interpretation of low-dose dexamethasone test combined with the administration of ovine corticotrophin-releasing hormone in childhood Cushing syndrome. J Clin Endocrinol Metab. 2008;93(11):4323–30. Epub 2008/08/30.CrossRefGoogle Scholar
  42. 42.
    Louiset E, Stratakis CA, Perraudin V, Griffin KJ, Libe R, Cabrol S, et al. The paradoxical increase in cortisol secretion induced by dexamethasone in primary pigmented nodular adrenocortical disease involves a glucocorticoid receptor-mediated effect of dexamethasone on protein kinase A catalytic subunits. J Clin Endocrinol Metab. 2009;94(7):2406–13. Epub 2009/04/23.CrossRefGoogle Scholar
  43. 43.
    Chrousos GP, Schulte HM, Oldfield EH, Gold PW, Cutler GB Jr, Loriaux DL. The corticotropin-releasing factor stimulation test. An aid in the evaluation of patients with Cushing’s syndrome. N Engl J Med. 1984;310(10):622–6. Epub 1984/03/08.CrossRefGoogle Scholar
  44. 44.
    Batista D, Courkoutsakis NA, Oldfield EH, Griffin KJ, Keil M, Patronas NJ, et al. Detection of adrenocorticotropin-secreting pituitary adenomas by magnetic resonance imaging in children and adolescents with cushing disease. J Clin Endocrinol Metab. 2005;90(9):5134–40. Epub 2005/06/09.CrossRefGoogle Scholar
  45. 45.
    Chrysostomou PP, Lodish MB, Turkbey EB, Papadakis GZ, Stratakis CA. Use of 3-dimensional volumetric modeling of adrenal gland size in patients with primary pigmented nodular adrenocortical disease. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2016;48(4):242–6. Epub 2016/04/12.CrossRefGoogle Scholar
  46. 46.
    Isidori AM, Sbardella E, Zatelli MC, Boschetti M, Vitale G, Colao A, et al. Conventional and nuclear medicine imaging in ectopic Cushing’s syndrome: a systematic review. J Clin Endocrinol Metab. 2015;100(9):3231–44. Epub 2015/07/15.CrossRefGoogle Scholar
  47. 47.
    Oldfield EH, Doppman JL, Nieman LK, Chrousos GP, Miller DL, Katz DA, et al. Petrosal sinus sampling with and without corticotropin-releasing hormone for the differential diagnosis of Cushing’s syndrome. N Engl J Med. 1991;325(13):897–905. Epub 1991/10/06.CrossRefGoogle Scholar
  48. 48.
    Batista D, Gennari M, Riar J, Chang R, Keil MF, Oldfield EH, et al. An assessment of petrosal sinus sampling for localization of pituitary microadenomas in children with Cushing disease. J Clin Endocrinol Metab. 2006;91(1):221–4. Epub 2005/10/13.CrossRefGoogle Scholar
  49. 49.
    Batista DL, Oldfield EH, Keil MF, Stratakis CA. Postoperative testing to predict recurrent Cushing disease in children. J Clin Endocrinol Metab. 2009;94(8):2757–65. Epub 2009/05/28.CrossRefGoogle Scholar
  50. 50.
    Acharya SV, Gopal RA, Goerge J, Menon PS, Bandgar TR, Shah NS. Radiotherapy in paediatric Cushing’s disease: efficacy and long term follow up of pituitary function. Pituitary. 2010;13(4):293–7. Epub 2010/04/23.CrossRefGoogle Scholar
  51. 51.
    Morris LF, Harris RS, Milton DR, Waguespack SG, Habra MA, Jimenez C, et al. Impact and timing of bilateral adrenalectomy for refractory adrenocorticotropic hormone-dependent Cushing’s syndrome. Surgery. 2013;154(6):1174–83; discussion 83–4. Epub 2014/01/03.CrossRefGoogle Scholar
  52. 52.
    Ritzel K, Beuschlein F, Mickisch A, Osswald A, Schneider HJ, Schopohl J, et al. Clinical review: outcome of bilateral adrenalectomy in Cushing’s syndrome: a systematic review. J Clin Endocrinol Metab. 2013;98(10):3939–48. Epub 2013/08/21.CrossRefGoogle Scholar
  53. 53.
    Osswald A, Plomer E, Dimopoulou C, Milian M, Blaser R, Ritzel K, et al. Favorable long-term outcomes of bilateral adrenalectomy in Cushing’s disease. Eur J Endocrinol/Eur Fed Endocr Soc. 2014;171(2):209–15. Epub 2014/07/01.CrossRefGoogle Scholar
  54. 54.
    Pivonello R, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, et al. Pasireotide treatment significantly improves clinical signs and symptoms in patients with Cushing’s disease: results from a Phase III study. Clin Endocrinol. 2014;81(3):408–17. Epub 2014/02/19.CrossRefGoogle Scholar
  55. 55.
    Newell-Price J. Ketoconazole as an adrenal steroidogenesis inhibitor: effectiveness and risks in the treatment of Cushing’s disease. J Clin Endocrinol Metab. 2014;99(5):1586–8. Epub 2014/05/08.CrossRefGoogle Scholar
  56. 56.
    Fleseriu M, Biller BM, Findling JW, Molitch ME, Schteingart DE, Gross C. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab. 2012;97(6):2039–49. Epub 2012/04/03.CrossRefGoogle Scholar
  57. 57.
    Lodish M, Dunn SV, Sinaii N, Keil MF, Stratakis CA. Recovery of the hypothalamic-pituitary-adrenal axis in children and adolescents after surgical cure of Cushing’s disease. J Clin Endocrinol Metab. 2012;97(5):1483–91. Epub 2012/03/09.CrossRefGoogle Scholar
  58. 58.
    Bassareo PP, Fanos V, Zaffanello M, Mercuro G. Early markers of cardiovascular dysfunction in young girls affected by Cushing’s syndrome before and after successful cure. J Pediatr Endocrinol Metab: JPEM. 2010;23(6):627–35. Epub 2010/07/29.CrossRefGoogle Scholar
  59. 59.
    Bassareo PP, Marras AR, Pasqualucci D, Mercuro G. Increased arterial rigidity in children affected by Cushing’s syndrome after successful surgical cure. Cardiol Young. 2010;20(6):610–4. Epub 2010/05/22.CrossRefGoogle Scholar
  60. 60.
    Davies JH, Storr HL, Davies K, Monson JP, Besser GM, Afshar F, et al. Final adult height and body mass index after cure of paediatric Cushing’s disease. Clin Endocrinol. 2005;62(4):466–72. Epub 2005/04/06.CrossRefGoogle Scholar
  61. 61.
    Lebrethon MC, Grossman AB, Afshar F, Plowman PN, Besser GM, Savage MO. Linear growth and final height after treatment for Cushing’s disease in childhood. J Clin Endocrinol Metab. 2000;85(9):3262–5. Epub 2000/09/22.PubMedGoogle Scholar
  62. 62.
    Magiakou MA, Mastorakos G, Chrousos GP. Final stature in patients with endogenous Cushing’s syndrome. J Clin Endocrinol Metab. 1994;79(4):1082–5. Epub 1994/10/01.PubMedGoogle Scholar
  63. 63.
    Merke DP, Giedd JN, Keil MF, Mehlinger SL, Wiggs EA, Holzer S, et al. Children experience cognitive decline despite reversal of brain atrophy one year after resolution of Cushing syndrome. J Clin Endocrinol Metab. 2005;90(5):2531–6. Epub 2005/03/03.CrossRefGoogle Scholar
  64. 64.
    Keil MF, Merke DP, Gandhi R, Wiggs EA, Obunse K, Stratakis CA. Quality of life in children and adolescents 1-year after cure of Cushing syndrome: a prospective study. Clin Endocrinol. 2009;71(3):326–33. Epub 2009/01/28.CrossRefGoogle Scholar
  65. 65.
    Keil MF, Zametkin A, Ryder C, Lodish M, Stratakis CA. Cases of psychiatric morbidity in pediatric patients after remission of Cushing syndrome. Pediatrics. 2016;137(4):e20152234. Epub 2016/03/31.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maya Lodish
    • 1
  • Margaret F. Keil
    • 2
  • Constantine A. Stratakis
    • 3
  1. 1.Pediatric EndocrinologySection on Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUSA
  2. 2.Clinical Center, National Institutes of HealthBethesdaUSA
  3. 3.National Institute of Child Health and Human Development, Section on Genetics and Endocrinology (SEGEN), National Institutes of HealthBethesdaUSA

Personalised recommendations