Adrenal Insufficiency

  • Kathleen E. Bethin
  • Indrajit Majumdar
  • Louis J. Muglia


Adrenal insufficiency is an important source of potentially life-threatening human disease. Defects at each level of the hypothalamic–pituitary–adrenal axis can yield impaired adrenal function that results in variable degrees of glucocorticoid or mineralocorticoid deficiency. In this chapter, we describe the physiology and regulation of adrenal steroid action, followed by presentation of mechanisms of primary, secondary, and tertiary adrenal insufficiency. The components of establishing a diagnosis of adrenal insufficiency along with its causation are summarized. Current pharmacological and psychosocial therapeutic interventions for disorders of impaired adrenal function conclude the overview.


Adrenal Steroids Adrenal insufficiency Addison Disease Congenital adrenal hyperplasia Adrenocorticotropic hormone (ACTH) Glucocorticoid Mineralocorticoid Pituitary Hypothalamus 


  1. 1.
    Addison T. Anemia – disease of the supra-renal capsules. Lond Med Gaz. 1849;43:517–8.Google Scholar
  2. 2.
    Graner JL. Disease discovery as process: the example of Addison's disease. Pharos. 1987;50:13–6.PubMedGoogle Scholar
  3. 3.
    Addison T. On the constitutional and local effects of disease of the supra-renal capsules. London: Samuel Highley; 1855.Google Scholar
  4. 4.
    Brown-Sequard CE. Recherches experimentales sur la physiologie et al pathologie des capsules surrenales. CR Seances Acad Sci. 1856;43:422–5, 542–6.Google Scholar
  5. 5.
    Dunlop D. Eighty-six cases of Addison's disease. Br Med J. 1963;2:887–91.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Fraser CG, Preuss FS, Bigford WD. Adrenal atrophy and irreversible shock associated with cortisone therapy. JAMA. 1952;149:1542–3.CrossRefGoogle Scholar
  7. 7.
    Lewis L, Robinson RF, Yee J, Hacker LA, Eisen G. Fatal adrenal cortical insufficiency precipitated by surgery during prolonged continuous cortisone treatment. Ann Intern Med. 1953;39:116–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Orth DN, Kovacs WJ, Debold CR. The adrenal cortex. In: Wilson JD, Foster DW, editors. Williams textbook of endocrinology. 8th ed. Philadelphia: W. B. Saunders Co.; 1992. p. 489–619.Google Scholar
  9. 9.
    Van Cauter E, Shapiro ET, Tillil H, Polonsky KS. Circadian modulation of glucose and insulin responses to meals: relationship to cortisol rhythm. Am J Phys. 1992;262:E467–75.Google Scholar
  10. 10.
    Ahmed AB, George BC, Gonzalez-Auvert C, Dingman JF. Increased plasma arginine vasopressin in clinical adrenocortical insufficiency and its inhibition by glucosteroids. J Clin Invest. 1967;46:111–23.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Green HH, Harrington AR, Valtin H. On the role of antidiuretic hormone in the inhibition of acute water diuresis in adrenal insufficiency and the effects of gluco- and mineralocorticoids in reversing inhibition. J Clin Invest. 1970;49:1724–36.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Iwasaki Y, Kondo K, Hasegawa H, Oiso Y. Osmoregulation of plasma vasopressin in three cases with adrenal insufficiency of diverse etiologies. Horm Res. 1997;47:38–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Kleeman CR, Czaczkes JW, Cutler R. Mechanisms of impaired water excretion in adrenal and pituitary insufficiency. IV. Antidiuretic hormone in primary and secondary adrenal insufficiency. J Clin Invest. 1964;43:1641–8.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Munck A, Guyre PM. Glucocorticoid physiology, pharmacology, stress. Adv Exp Med Biol. 1984;196:81–96.CrossRefGoogle Scholar
  15. 15.
    Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation [see comments]. N Engl J Med. 1995;332(20):1351–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms [editorial]. Clin Sci. 1998;94(6):557–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Truss M, Beato M. Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocr Rev. 1993;14:459.PubMedGoogle Scholar
  18. 18.
    Collingwood TN, Urnov FD, Wolffe AP. Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription. J Mol Endocrinol. 1999;23:255–75.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptor. Nature. 1995;377:454–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeanmougin F, Losson R, et al. The involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J. 1996;14:2020–33.Google Scholar
  21. 21.
    Miner JN, Yamamoto KR. Regulatory crosstalk at composite response elements. Trends Biochem Sci. 1991;16:423–6.PubMedCrossRefGoogle Scholar
  22. 22.
    McKay LI, Cidlowski JA. Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol. 1998;12(1):45–56.PubMedCrossRefGoogle Scholar
  23. 23.
    McKay LI, Cidlowski JA. Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr Rev. 1999;20(4):435–59.PubMedGoogle Scholar
  24. 24.
    Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids: inhibition of NF-kB activity through induction of IkB synthesis. Science. 1995;270:286–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Scheinman RI, Cogswell PC, Lofquist AK, Baldwin ASJ. Role of transcriptional activation of IκBα in mediation of immunosuppression by glucocorticoids. Science. 1995;270:283–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Aguilera G. Regulation of pituitary ACTH secretion during chronic stress. Front Neuroendocrinol. 1994;15:312–50.CrossRefGoogle Scholar
  27. 27.
    Dallman MF, Akana SF, Cascio CS, Darlington DN, Jacobson L, Levin N. Regulation of ACTH secretion: variations on a theme of B. Recent Prog Horm Res. 1987;43:113–73.PubMedGoogle Scholar
  28. 28.
    Dallman MF, Strack AM, Akana SF, Bradbury MJ, Hanson ES, Scribner KA, et al. Feast and famine: critical role of glucocorticoids with insulin in daily energy flow. Front Neuroendocrinol. 1993;14:303–47.PubMedCrossRefGoogle Scholar
  29. 29.
    Plotsky P, Bruhn T, Vale W. Hypophysiotropic response of adrenocorticotropin in response to insulin induced hypoglycemia. Endocrinology. 1985;117:323–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Allolio B, Reincke M. Adrenocorticotropin receptor and adrenal disorders. Horm Res. 1997;47(4-6):273–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Clark AJ, Cammas FM. The ACTH receptor. Bailliere Clin Endocrinol Metab. 1996;10(1):29–47.CrossRefGoogle Scholar
  32. 32.
    Dzau VJ. Molecular and physiological aspects of tissue renin-angiotensin system: emphasis on cardiovascular control. J Hypertens Suppl. 1988;6(3):S7–12.PubMedGoogle Scholar
  33. 33.
    Gibbons GH, Dzau VJ, Farhi ER, Barger AC. Interaction of signals influencing renin release. Annu Rev Physiol. 1984;46:291–308.PubMedCrossRefGoogle Scholar
  34. 34.
    Irvine WJ, Barnes EW. Adrenocortical insufficiency. Clin Endocrinol Metab. 1972;1:549–94.CrossRefGoogle Scholar
  35. 35.
    Blizzard RM, Chee D, Davis W. The incidence of adrenal and other antibodies in the sera of patients with idiopathic adrenal insufficiency (Addison's disease). Clin Exp Immunol. 1967;2:19–30.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Falorni A, Nikoshkov A, Laureti S, Grenback E, Hulting AL, Casucci G, et al. High diagnostic accuracy for idiopathic Addison's disease with a sensitive radiobinding assay for autoantibodies against recombinant human 21-hydroxylase. J Clin Endocrinol Metab. 1995;80(9):2752–5.PubMedGoogle Scholar
  37. 37.
    Nerup J. Addison's disease–clinical studies. A report of 108 cases. Acta Endocrinol. 1974;76(1):127–41.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Riley PBW. Autoimmune polyglandular syndrome. In: Sperling MA, editor. Pediatr endocrinol. Philadelphia: W.B. Saunders; 1996. p. 509–22.Google Scholar
  39. 39.
    Ahonen P, Miettinen A, Perheentupa J. Adrenal and steroidal cell antibodies in patients with autoimmune polyglandular disease type I and risk of adrenocortical and ovarian failure. J Clin Endocrinol Metab. 1987;64(3):494–500.CrossRefPubMedGoogle Scholar
  40. 40.
    Boscaro M, Betterle C, Sonino N, Volpato M, Paoletta A, Fallo F. Early adrenal hypofunction in patients with organ-specific autoantibodies and no clinical adrenal insufficiency. J Clin Endocrinol Metab. 1994;79(2):452–5.PubMedGoogle Scholar
  41. 41.
    Ahonen P, Myllarniemi S, Sipila I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med. 1990;322(26):1829–36.PubMedCrossRefGoogle Scholar
  42. 42.
    Leshin M. Polyglandular autoimmune syndromes. Am J Med Sci. 1985;290(2):77–88.PubMedCrossRefGoogle Scholar
  43. 43.
    Neufeld M, Maclaren NK, Blizzard RM. Two types of autoimmune Addison's disease associated with different polyglandular autoimmune (PGA) syndromes. Medicine. 1981;60(5):355–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, et al. Positional cloning of the APECED gene. Nat Genet. 1997;17(4):393–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Michels AW, Eisenbarth GS. Autoimmune polyendocrine syndrome type 1 (APS-1) as a model for understanding autoimmune polyendocrine syndrome type 2 (APS-2). J Inter Med. 2009;265(5):530–40.CrossRefGoogle Scholar
  46. 46.
    Husebye ES, Perheentupa J, Rautemaa R, Kämpe O. Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I. J Inter Med. 2009;265(5):514–29.CrossRefGoogle Scholar
  47. 47.
    New MI. Congenital adrenal hyperplasia. In: DeGroot LJ, editor. Endocrinology. 3rd ed. Philadelphia: W.B. Saunders; 1995. p. 1813–35.Google Scholar
  48. 48.
    Watterberg KL, Muglia LJ. Fetal and neonatal adrenocortical physiology. In: Polin RA, Abman SH, Rowitch D, Benitz WE, editors. Fetal and neonatal physiology, vol. 2. 5th ed. Philadelphia: Elsevier Health Sciences; 2016. p. 1492–500.Google Scholar
  49. 49.
    Hauffa BP, Miller WL, Grumbach MM, Conte FA, Kaplan SL. Congenital adrenal hyperplasia due to deficient cholesterol side-chain cleavage activity (20, 22-desmolase) in a patient treated for 18 years. Clin Endocrinol. 1985;23(5):481–93.CrossRefGoogle Scholar
  50. 50.
    Lin D, Sugawara T, Strauss JF 3rd, Clark BJ, Stocco DM, Saenger P, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis [see comments]. Science. 1995;267(5205):1828–31.PubMedCrossRefGoogle Scholar
  51. 51.
    Tint GS, Salen G, Batta AK, Shefer S, Irons M, Elias ER, et al. Correlation of severity and outcome with plasma sterol levels in variants of the Smith-Lemli-Opitz syndrome. J Pediatr. 1995;127(1):82–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Bialer MG, Penchaszadeh VB, Kahn E, Libes R, Krigsman G, Lesser ML. Female external genitalia and mullerian duct derivatives in a 46,XY infant with the smith-lemli-Opitz syndrome. Am J Med Genet. 1987;28(3):723–31.PubMedCrossRefGoogle Scholar
  53. 53.
    Jones KL. Smith-Lemli-Opitz syndrome. In: Smith's recognizable patterns of human malformation. 5th ed. Philadelphia: W.B. Saunders; 1997. p. 112–5.Google Scholar
  54. 54.
    Mosser J, Douar AM, Sarde CO, Kioschis P, Feil R, Moser H, et al. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters [see comments]. Nature. 1993;361(6414):726–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Mosser J, Lutz Y, Stoeckel ME, Sarde CO, Kretz C, Douar AM, et al. The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum Mol Genet. 1994;3(2):265–71.PubMedCrossRefGoogle Scholar
  56. 56.
    Kemp S, Wei HM, JF L, Braiterman LT, McGuinness MC, Moser AB, et al. Gene redundancy and pharmacological gene therapy: implications for X-linked adrenoleukodystrophy [see comments]. Nat Med. 1998;4(11):1261–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Hillman JC, Hammond J, Noe O, Reiss M. Endocrine investigations in De Lange's and Seckel's syndromes. Am J Ment Defic. 1968;73(1):30–3.PubMedGoogle Scholar
  58. 58.
    Muscatelli F, Strom TM, Walker AP, Zanaria E, Recan D, Meindl A, et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature. 1994;372(6507):672–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature. 1994;372(6507):635–41.PubMedCrossRefGoogle Scholar
  60. 60.
    Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet. 1999;22:125–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell. 1994;77:481–90.PubMedCrossRefGoogle Scholar
  62. 62.
    Weber A, Clark AJ. Mutations of the ACTH receptor gene are only one cause of familial glucocorticoid deficiency. Hum Mol Genet. 1994;3(4):585–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Weber A, Toppari J, Harvey RD, Klann RC, Shaw NJ, Ricker AT, et al. Adrenocorticotropin receptor gene mutations in familial glucocorticoid deficiency: relationships with clinical features in four families. J Clin Endocrinol Metab. 1995;80(1):65–71.PubMedGoogle Scholar
  64. 64.
    Yamaoka T, Kudo T, Takuwa Y, Kawakami Y, Itakura M, Yamashita K. Hereditary adrenocortical unresponsiveness to adrenocorticotropin with a postreceptor defect. J Clin Endocrinol Metab. 1992;75(1):270–4.PubMedGoogle Scholar
  65. 65.
    Metherell LA, Chapple JP, Cooray S, David A, Becker C, Ruschendorf F, et al. Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Nat Genet. 2005;37(2):166–70.PubMedCrossRefGoogle Scholar
  66. 66.
    Metherell LA, Naville D, Halaby G, Begeot M, Huebner A, Nurnberg G, et al. Nonclassic lipoid congenital adrenal hyperplasia masquerading as familial glucocorticoid deficiency. J Clin Endocrinol Metab. 2009;94(10):3865–71.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Anderson RA, Byrum RS, Coates PM, Sando GN. Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease. Proc Natl Acad Sci U S A. 1994;91(7):2718–22.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wolman M. Wolman disease and its treatment. Clin Pediatr. 1995;34(4):207–12.CrossRefGoogle Scholar
  69. 69.
    Glasgow BJ, Steinsapir KD, Anders K, Layfield LJ. Adrenal pathology in the acquired immune deficiency syndrome. Am J Clin Physiol. 1985;84(5):594–7.Google Scholar
  70. 70.
    Membreno L, Irony I, Dere W, Klein R, Biglieri EG, Cobb E. Adrenocortical function in acquired immunodeficiency syndrome. J Clin Endocrinol Metab. 1987;65(3):482–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Moreira AC, Martinez R, Castro M, Elias LL. Adrenocortical dysfunction in paracoccidioidomycosis: comparison between plasma beta-lipotrophin/adrenocorticotrophin levels and adrenocortical tests. Clin Endocrinol. 1992;36(6):545–51.CrossRefGoogle Scholar
  72. 72.
    Sarosi GA, Voth DW, Dahl BA, Doto IL, Tosh FE. Disseminated histoplasmosis: results of long-term follow-up. A center for disease control cooperative mycoses study. Ann Intern Med. 1971;75(4):511–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Maloney P. Addison's disease due to chronic disseminated coccidioidomycosis. Arch Intern Med. 1952;90:869–78.CrossRefGoogle Scholar
  74. 74.
    Walker BF, Gunthel CJ, Bryan JA, Watts NB, Clark RV. Disseminated cryptococcosis in an apparently normal host presenting as primary adrenal insufficiency: diagnosis by fine needle aspiration. Am J Med. 1989;86(6 Pt 1):715–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Fishman LM, Liddle GW, Island DP, Fleischer N, Kuchel O. Effects of amino-glutethimide on adrenal function in man. J Clin Endocrinol Metab. 1967;27(4):481–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Wagner RL, White PF, Kan PB, Rosenthal MH, Feldman D. Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N Engl J Med. 1984;310(22):1415–21.PubMedCrossRefGoogle Scholar
  77. 77.
    Sonino N. The use of ketoconazole as an inhibitor of steroid production. N Engl J Med. 1987;317(13):812–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Liddle GW, Island D, EM Lance EM, et al. Alterations of adrenal steroid patterns in man resulting from treatment with a chemical inhibitor of 11Β-hydroxylation. J Clin Endocrinol Metab. 1958;18:906–12.PubMedCrossRefGoogle Scholar
  79. 79.
    Ashby H, DiMattina M, Linehan WM, Robertson CN, Queenan JT, Albertson BD. The inhibition of human adrenal steroidogenic enzyme activities by suramin. J Clin Endocrinol Metab. 1989;68(2):505–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Elias AN, Gwinup G. Effects of some clinically encountered drugs on steroid synthesis and degradation. Metab Clin Exp. 1980;29(6):582–95.PubMedCrossRefGoogle Scholar
  81. 81.
    Keilholz U, Guthrie GP Jr. Adverse effect of phenytoin on mineralocorticoid replacement with fludrocortisone in adrenal insufficiency. Am J Med Sci. 1986;291(4):280–3.PubMedCrossRefGoogle Scholar
  82. 82.
    Robinson BG, Hales IB, Henniker AJ, Ho K, Luttrell BM, Smee IR, et al. The effect of o,p'-DDD on adrenal steroid replacement therapy requirements. Clin Endocrinol. 1987;27(4):437–44.CrossRefGoogle Scholar
  83. 83.
    Axelrod L. Glucocorticoid therapy. Medicine. 1976;55:39–65.PubMedCrossRefGoogle Scholar
  84. 84.
    Livanou T, Ferriman D, James VHT. Recovery of hypothalamo-pituitary- adrenal function after corticosteroid therapy. Lancet. 1967;2:856–9.PubMedCrossRefGoogle Scholar
  85. 85.
    de Morsier G. Etudes sur les dysraphies cranioencephaliques. III. Agenesie du septum lucidum avec malformation du tractus optique. La dysplasie septo-optique. Schweiz Arch Neurol Neurochir Psychiatr. 1956;77:267–92.Google Scholar
  86. 86.
    Willnow S, Kiess W, Butenandt O, Dorr HG, Enders A, Strasser-Vogel B, et al. Endocrine disorders in septo-optic dysplasia (De Morsier syndrome)–evaluation and follow up of 18 patients. Eur J Pediatr. 1996;155(3):179–84.PubMedCrossRefGoogle Scholar
  87. 87.
    Brodsky MC, Conte FA, Taylor D, Hoyt CS, Mrak RE. Sudden death in septo-optic dysplasia. Report of 5 cases. Arch Ophthalmol. 1997;115(1):66–70.PubMedCrossRefGoogle Scholar
  88. 88.
    Stevenson DA, Anaya TM, Clayton-Smith J, Hall BD, Van Allen MI, Zori RT, et al. Unexpected death and critical illness in Prader-Willi syndrome: report of ten individuals. Am J Med Genet A. 2004;124A(2):158–64.PubMedCrossRefGoogle Scholar
  89. 89.
    de Lind van Wijngaarden RF, Otten BJ, Festen DA, Joosten KF, de Jong FH, Sweep FC, et al. High prevalence of central adrenal insufficiency in patients with Prader-Willi syndrome. J Clin Endocrinol Metab. 2008;93(5):1649–54.CrossRefGoogle Scholar
  90. 90.
    Farholt S, Sode-Carlsen R, Christiansen JS, Ostergaard JR, Hoybye C. Normal cortisol response to high-dose synacthen and insulin tolerance test in children and adults with Prader-Willi syndrome. J Clin Endocrinol Metab. 2011;96:E173.PubMedCrossRefGoogle Scholar
  91. 91.
    Nyunt O, Cotterill AM, Archbold SM, Wu JY, Leong GM, Verge CF, et al. Normal cortisol response on low-dose synacthen (1 {micro}g) test in children with Prader Willi syndrome. J Clin Endocrinol Metab. 2010;95(12):E464–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19(2):155–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Pernasetti F, Toledo SP, Vasilyev VV, Hayashida CY, Cogan JD, Ferrari C, et al. Impaired adrenocorticotropin-adrenal axis in combined pituitary hormone deficiency caused by a two-base pair deletion (301-302delAG) in the prophet of Pit-1 gene. J Clin Endocrinol Metab. 2000;85(1):390–7.PubMedGoogle Scholar
  94. 94.
    Kyllo JH, Collins MM, Vetter KL, Cuttler L, Rosenfield RL, Donohoue PA. Linkage of congenital isolated adrenocorticotropic hormone deficiency to the corticotropin releasing hormone locus using simple sequence repeat polymorphisms. Am J Med Genet. 1996;62(3):262–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Guo W, Mason JS, Stone CG, Morgan SA, Madu SI, Baldini A, et al. Diagnosis of X-linked adrenal hypoplasia congenita by mutation analysis of the DAX1 gene. JAMA. 1995;274:324–30.PubMedCrossRefGoogle Scholar
  96. 96.
    Walser M, Robinson BHB, Duckett JWJ. The hypercalcemia of adrenal insufficiency. J Clin Invest. 1963;42:456–65.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Moser HW, Moser AE, Singh I, O'Neill BP. Adrenoleukodystrophy: survey of 303 cases: biochemistry, diagnosis, and therapy. Ann Neurol. 1984;16(6):628–41.PubMedCrossRefGoogle Scholar
  98. 98.
    Laureti S, Casucci G, Santeusanio F, Angeletti G, Aubourg P, Brunetti P. X-linked adrenoleukodystrophy is a frequent cause of idiopathic Addison's disease in young adult male patients. J Clin Endocrinol Metab. 1996;81(2):470–4.PubMedGoogle Scholar
  99. 99.
    Bornstein SR, Allolio B, Arlt W, Barthel A, Don-Wauchope A, Hammer GD, et al. Diagnosis and treatment of primary adrenal insufficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(2):364–89.PubMedCrossRefGoogle Scholar
  100. 100.
    Onishi S, Miyazawa G, Nishimura Y, Sugiyama S, Yamakawa T, Inagaki H, et al. Postnatal development of circadian rhythm in serum cortisol levels in children. Pediatrics. 1983;72(3):399–404.PubMedGoogle Scholar
  101. 101.
    Grinspoon SK, Biller BMK. Laboratory assessment of adrenal insufficiency. J Clin Endocrinol Metab. 1994;79:923–31.PubMedGoogle Scholar
  102. 102.
    Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(9):4133–60.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    de Peretti E, Forest MG. Unconjugated dehydroepiandrosterone plasma levels in normal subjects from birth to adolescence in human: the use of a sensitive radioimmunoassay. J Clin Endocrinol Metab. 1976;43:982–91.PubMedCrossRefGoogle Scholar
  104. 104.
    Doerr HG, Sippell WG, Versmold HT, Bidlingmaier F, Knorr D. Plasma aldosterone and 11-deoxycortisol in newborn infants: a reevaluation. J Clin Endocrinol Metab. 1987;65:208–10.CrossRefGoogle Scholar
  105. 105.
    Sippel WG, Becker H, Versmold HT, Bidlingmaier F, Knorr D. Longitudinal studies of plasma aldosterone, corticosterone, deoxycorticosterone, progesterone, 17-hydroxyprogesterone, cortisol, and cortisone determined simultaneously in mother and child at birth and during the early neonatal period. I. Spontaneous delivery. J Clin Endocrinol Metab. 1978;46:971–85.CrossRefGoogle Scholar
  106. 106.
    Doerr HG, Sippell WG, Versmold HT, Bidlingmaier F, Knorr D. Plasma mineralocorticoids, glucocorticoids, and progestins in premature infants: longitudinal study during the first week of life. Pediatr Res. 1988;23:525–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Lee MM, Rajagopalan L, Berg GJ, Moshang TJ. Serum adrenal steroid concentrations in premature infants. J Clin Endocrinol Metab. 1989;69:1133–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Thomas S, Murphy JF, Dyas J, Ryallis M, Hughes IA. Response to ACTH in the newborn. Arch Dis Child. 1986;61:57–60.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Oelkers W, Diederich S, Bahr V. Diagnosis and therapy surveillance in Addison's disease: rapid adrenocorticotropin (ACTH) test and measurement of plasma ACTH, renin activity, and aldosterone. J Clin Endocrinol Metab. 1992;75(1):259–64.PubMedGoogle Scholar
  110. 110.
    Dickstein G, Shechner C, Nicholson WE, Rosner I, Shen-Orr Z, Adawi F, et al. Adrenocorticotropin stimulation test: effects of basal cortisol level, time of day, suggested new sensitive low dose test. J Clin Endocrinol Metab. 1991;72:773–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Merry WH, Caplan RH, Wickus GG, Reynertson RH, Kisken WA, Cogbill TH, et al. Postoperative acute adrenal failure caused by transient corticotropin deficiency. Surgery. 1994;116:1095–100.PubMedGoogle Scholar
  112. 112.
    Tordjman K, Jaffe A, Grazas N, Apter C, Stern N. The role of the low dose (1 microgram) adrenocorticotropin test in the evaluation of patients with pituitary diseases [see comments]. J Clin Endocrinol Metab. 1995;80(4):1301–5.PubMedGoogle Scholar
  113. 113.
    Tordjman K, Jaffe A, Trostanetsky Y, Greenman Y, Limor R, Stern N. Low-dose (1 microgram) adrenocorticotrophin (ACTH) stimulation as a screening test for impaired hypothalamo-pituitary-adrenal axis function: sensitivity, specificity and accuracy in comparison with the high-dose (250 microgram) test. Clin Endocrinol. 2000;52(5):633–40.CrossRefGoogle Scholar
  114. 114.
    Mushtaq T, Shakur F, Wales JK, Wright NP. Reliability of the low dose synacthen test in children undergoing pituitary function testing. J Pediatr Endocrinol Metab. 2008;21(12):1129–32.PubMedCrossRefGoogle Scholar
  115. 115.
    Pavord SR, Girach A, Price DE, Absalom SR, Falconer-Smith J, Howlett TA. A retrospective audit of the combined pituitary function test, using the insulin stress test, TRH and GnRH in a district laboratory. Clin Endocrinol. 1992;36:135–9.CrossRefGoogle Scholar
  116. 116.
    Schlaghecke R, Kornely E, Santen RT, Ridderskamp P. The effect of long-term glucocorticoid therapy on pituitary-adrenal responses to exogenous corticotropin-releasing hormone [see comments]. N Engl J Med. 1992;326(4):226–30.PubMedCrossRefGoogle Scholar
  117. 117.
    Schulte HM, Chrousos GP, Avgerinos P, Oldfield EH, Gold PW, Cutler GB Jr, et al. The corticotropin-releasing hormone stimulation test: a possible aid in the evaluation of patients with adrenal insufficiency. J Clin Endocrinol Metab. 1984;58(6):1064–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Schulte HM, Chrousos GP, Oldfield EH, Gold PW, Cutler GB, Loriaux DL. Ovine corticotropin-releasing factor administration in normal men. Pituitary and adrenal responses in the morning and evening. Horm Res. 1985;21(2):69–74.PubMedCrossRefGoogle Scholar
  119. 119.
    Littley MD, Gibson S, White A, Shalet SM. Comparison of the ACTH and cortisol responses to provocative testing with glucagon and insulin hypoglycaemia in normal subjects. Clin Endocrinol. 1989;31:527–33.CrossRefGoogle Scholar
  120. 120.
    Spathis GS, Bloom SR, Jeffcoate WJ, Millar JGB, Kurtz A, Pyasena MRD, et al. Subcutaneous glucagon as a test of the ability of the pituitary to secrete GH and ACTH. Clin Endocrinol. 1974;3:175–86.CrossRefGoogle Scholar
  121. 121.
    Chanoine JP, Rebuffat E, Kahn A, Bergmann P, Van Vliet G. Glucose, growth hormone, cortisol, and insulin responses to glucagon injection in normal infants, aged 0.5–12 months. J Clin Endocrinol Metab. 1995;80:3032–5.PubMedGoogle Scholar
  122. 122.
    Orme SM, Peacey SR, Barth JH, Belchetz PE. Comparison of test of stress-related cortisol secretion in pituitary disease. Clin Endocrinol. 1996;45:135–40.CrossRefGoogle Scholar
  123. 123.
    Vanderschueren-Lodeweyckx M, Wolter R, Malvaux P, Eggermont E, Eeckels R. The glucagon stimulation test: effect on plasma growth hormone and on immunoreactive insulin, cortisol, and glucose in children. J Pediatr. 1974;85:182–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Spiger M, Jubiz W, Meikle W, West CD, Tylor FH. Single dose metyrapone test. Arch Intern Med. 1975;135:698–700.PubMedCrossRefGoogle Scholar
  125. 125.
    Liddle GW, Estep HL, Kendall JW, Williams WC, Townes AW. Clinical application of a new test of pituitary reserve. J Clin Endocrinol Metab. 1959;19:875–94.PubMedCrossRefGoogle Scholar
  126. 126.
    Fiad TM, Kirby JM, Cunningham SK, McKenna TJ. The overnight single-dose metyrapone test is a simple and reliable index of the hypothalamic-pituitary-adrenal axis. Clin Endocrinol. 1994;40:603–9.CrossRefGoogle Scholar
  127. 127.
    Kulkarni MV, Lee KF, McArdle CB, Yeakley JW, Haar FL. 1.5-T MR imaging of pituitary microadenomas: technical considerations and CT correlation. AJNR Am J Neuroradiol. 1988;9:5–11.PubMedGoogle Scholar
  128. 128.
    Krebs TL, Wagner BJ. The adrenal gland: radiologic-pathologic correlation. Magn Reson Imaging Clin N Am. 1997;5(1):127–46.PubMedGoogle Scholar
  129. 129.
    Lee MJ, Mayo-Smith WW, Hahn PF, Goldberg MA, Boland GW, Saini S, et al. State-of-the-art MR imaging of the adrenal gland. Radiographics. 1994;14(5):1015–29; discussion 29–32.PubMedCrossRefGoogle Scholar
  130. 130.
    Sosa JA, Udelsman R. Imaging of the adrenal gland. Surg Oncol Clin N Am. 1999;8(1):109–27.PubMedGoogle Scholar
  131. 131.
    Weishaupt D, Debatin JF. Magnetic resonance: evaluation of adrenal lesions. Curr Opin Urol. 1999;9(2):153–63.PubMedCrossRefGoogle Scholar
  132. 132.
    Menon K, Ward RE, Lawson ML, Gaboury I, Hutchison JS, Hebert PC, et al. A prospective multicenter study of adrenal function in critically ill children. Am J Respir Crit Care Med. 2010;182(2):246–51.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Bone M, Diver M, Selby A, Sharples A, Addison M, Clayton P. Assessment of adrenal function in the initial phase of meningococcal disease. Pediatrics. 2002;110(3):563–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Marik PE, Pastores SM, Annane D, Meduri GU, Sprung CL, Arlt W, et al. Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit Care Med. 2008;36(6):1937–49. Scholar
  135. 135.
    Menon K, Clarson C. Adrenal function in pediatric critical illness. Pediatr Crit Care Med. 2002;3(2):112–6.PubMedCrossRefGoogle Scholar
  136. 136.
    Rose SR, Lustig RH, Burstein S, Pitukcheewanont P, Broome DC, Burghen GA. Diagnosis of ACTH deficiency. Horm Res. 1999;52(2):73–9.PubMedGoogle Scholar
  137. 137.
    Sarthi M, Lodha R, Vivekanandhan S, Arora NK. Adrenal status in children with septic shock using low-dose stimulation test. Pediatr Crit Care Med. 2007;8(1):23–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Pittinger TP, Sawin RS. Adrenocortical insufficiency in infants with congenital diaphragmatic hernia: a pilot study. J Pediatr Surg. 2000;35(2):223–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Quiney NF, Durkin MA. Lesson of the week: adrenocortical failure in intensive care. BMJ. 1995;310(6989):1253–4.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Soni A, Pepper GM, Wyrwinski PM, Ramirez NE, Simon R, Pina T, et al. Adrenal insufficiency occurring during septic shock: incidence, outcome, and relationship to peripheral cytokine levels. Am J Med. 1995;98(3):266–71.PubMedCrossRefGoogle Scholar
  141. 141.
    Arafah BM. Hypothalamic pituitary adrenal function during critical illness: limitations of current assessment methods. J Clin Endocrinol Metab. 2006;91(10):3725–45.PubMedCrossRefGoogle Scholar
  142. 142.
    Huysman MW, Hokken-Koelega AC, De Ridder MA, Sauer PJ. Adrenal function in sick very preterm infants. Pediatr Res. 2000;48(5):629–33.PubMedCrossRefGoogle Scholar
  143. 143.
    Karlsson R, Kallio J, Irjala K, Ekblad S, Toppari J, Kero P. Adrenocorticotropin and corticotropin-releasing hormone tests in preterm infants. J Clin Endocrinol Metab. 2000;85(12):4592–5.PubMedGoogle Scholar
  144. 144.
    Masumoto K, Kusudo S, Aoyagi H, Tamura Y, Obonai T, Yamaski C, et al. Comparison of serum cortisol concentrations in preterm infants with or without late-onset circulatory collapse due to adrenal insufficiency of prematurity. Pediatr Res. 2008;63(6):686–90. Scholar
  145. 145.
    Ng PC, Lam CWK, Lee CH, Ma KC, Fok TF, Chan IHS, et al. Reference ranges and factors affecting the human corticotropin-releasing hormone test in preterm, very low birth weight infants. J Clin Endocrinol Metab. 2002;87(10):4621–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Heazelwood VJ, Galligan JP, Cannell GR, Bochner F, Mortimer RH. Plasma cortisol delivery from oral cortisol and cortisone acetate: relative bioavailability. Br J Clin Pharmacol. 1984;17(1):55–9.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Keenan BS, Eberle AE, Lin TH, Clayton GW. Inappropriate adrenal androgen secretion with once-a-day corticosteroid therapy for congenital adrenal hyperplasia. J Pediatr. 1990;116(1):133–6.PubMedCrossRefGoogle Scholar
  148. 148.
    DeVile CJ, Stanhope R. Hydrocortisone replacement therapy in children and adolescents with hypopituitarism [see comments]. Clin Endocrinol. 1997;47(1):37–41.CrossRefGoogle Scholar
  149. 149.
    Groves RW, Toms GC, Houghton BJ, Monson JP. Corticosteroid replacement therapy: twice or thrice daily? J R Soc Med. 1988;81(9):514–6.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Laron Z, Pertzelan A. The comparative effect of 6 alpha-fluoroprednisolone, 6 alpha-methylprednisolone, and hydrocortisone on linear growth of children with congenital adrenal virilism and Addison's disease. J Pediatr. 1968;73(5):774–82.PubMedCrossRefGoogle Scholar
  151. 151.
    Stempfel RS Jr, Sheikholislam BM, Lebovitz HE, Allen E, Franks RC. Pituitary growth hormone suppression with low-dosage, long-acting corticoid administration. J Pediatr. 1968;73(5):767–73.PubMedCrossRefGoogle Scholar
  152. 152.
    Van Metre TEJ, Niemann WA, Rosen LJ. A comparison of the growth suppressive effect of cortisone, prednisone and other adrenal cortical hormones. J Allergy. 1960;31:531.CrossRefGoogle Scholar
  153. 153.
    Merke DP, Cho D, Anton Calis K, Keil MF, Chrousos GP. Hydrocortisone suspension and hydrocortisone tablets are not bioequivalent in the treatment of children with congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2001;86(1):441–5.PubMedCrossRefGoogle Scholar
  154. 154.
    Weldon VV, Kowarski A, Migeon CJ. Aldosterone secretion rates in normal subjects from infancy to adulthood. Pediatrics. 1967;39(5):713–23.PubMedGoogle Scholar
  155. 155.
    Mullis PE, Hindmarsh PC, Brook CG. Sodium chloride supplement at diagnosis and during infancy in children with salt-losing 21-hydroxylase deficiency. Eur J Pediatr. 1990;150(1):22–5.PubMedCrossRefGoogle Scholar
  156. 156.
    Chernow B, Alexander HR, Smallridge RC, Thompson WR, Cook D, Beardsley D, et al. Hormonal responses to graded surgical stress. Arch Intern Med. 1987;147(7):1273–8.PubMedCrossRefGoogle Scholar
  157. 157.
    Espiner E. Urinary cortisol excretion in stress situations and in patients with Cushing's syndrome. J Endocrinol. 1966;35:29–44.PubMedCrossRefGoogle Scholar
  158. 158.
    Hume DM, Bell CC, Bartter F. Direct measurement of adrenal secretion during operative trauma and convalescence. Surgery. 1962;52:174–87.PubMedGoogle Scholar
  159. 159.
    Ichikawa Y. Metabolism of cortisol-4-C14 in patients with infections and collagen diseases. Metabolism. 1966;15:613–25.PubMedCrossRefGoogle Scholar
  160. 160.
    Kehlet H, Binder C. Value of an ACTH test in assessing hypothalamic-pituitary-adrenocortical function in glucocorticoid-treated patients. Br Med J. 1973;2(859):147–9.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Wise L, Margraf HW, Ballinger WF. A new concept on the pre- and postoperative regulation of cortisol secretion. Surgery. 1972;72(2):290–9.PubMedGoogle Scholar
  162. 162.
    Kehlet H. A rational approach to dosage and preparation of parenteral glucocorticoid substitution therapy during surgical procedures. A short review. Acta Anaesthesiol Scand. 1975;19(4):260–4.CrossRefPubMedGoogle Scholar
  163. 163.
    Kehlet H, Binder C. Adrenocortical function and clinical course during and after surgery in unsupplemented glucocorticoid-treated patients. Br J Anaesth. 1973;45(10):1043–8.CrossRefPubMedGoogle Scholar
  164. 164.
    Salem M, Tainsh RE Jr, Bromberg J, Loriaux DL, Chernow B. Perioperative glucocorticoid coverage. A reassessment 42 years after emergence of a problem. Ann Surg. 1994;219(4):416–25.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Miller WL. Congenital adrenal hyperplasias. Endocrinol Metab Clin N Am. 1991;20(4):721–49.Google Scholar
  166. 166.
    Nickels DA, Moore DC. Serum cortisol responses in febrile children. Pediatr Infect Dis J. 1989;8(1):16–20.PubMedCrossRefGoogle Scholar
  167. 167.
    Girgis R, Winter JS. The effects of glucocorticoid replacement therapy on growth, bone mineral density, and bone turnover markers in children with congenital adrenal hyperplasia [see comments]. J Clin Endocrinol Metab. 1997;82(12):3926–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Winter JS, Couch RM. Modern medical therapy of congenital adrenal hyperplasia. A decade of experience. Ann N Y Acad Sci. 1985;458:165–73.PubMedCrossRefGoogle Scholar
  169. 169.
    Bonfig W, Dalla Pozza SB, Schmidt H, Pagel P, Knorr D, Schwarz HP. Hydrocortisone dosing during puberty in patients with classical congenital adrenal hyperplasia: an evidence-based recommendation. J Clin Endocrinol Metab. 2009;94(10):3882–8.PubMedCrossRefGoogle Scholar
  170. 170.
    Grigorescu-Sido A, Bettendorf M, Schulze E, Duncea I, Heinrich U. Growth analysis in patients with 21-hydroxylase deficiency influence of glucocorticoid dosage, age at diagnosis, phenotype and genotype on growth and height outcome. Horm Res. 2003;60(2):84–90.PubMedGoogle Scholar
  171. 171.
    Manoli I, Kanaka-Gantenbein C, Voutetakis A, Maniati-Christidi M, Dacou-Voutetakis C. Early growth, pubertal development, body mass index and final height of patients with congenital adrenal hyperplasia: factors influencing the outcome. Clin Endocrinol. 2002;57(5):669–76.CrossRefGoogle Scholar
  172. 172.
    Van der Kamp HJ, Otten BJ, Buitenweg N, De Muinck Keizer-Schrama SMPF, Oostdijk W, Jansen M, et al. Longitudinal analysis of growth and puberty in 21-hydroxylase deficiency patients. Arch Dis Child. 2002;87(2):139–44.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    German A, Suraiya S, Tenenbaum-Rakover Y, Koren I, Pillar G, Hochberg ZE. Control of childhood congenital adrenal hyperplasia and sleep activity and quality with morning or evening glucocorticoid therapy. J Clin Endocrinol Metab. 2008;93(12):4707–10.PubMedCrossRefGoogle Scholar
  174. 174.
    Weise M, Drinkard B, Mehlinger SL, Holzer SM, Eisenhofer G, Charmandari E, et al. Stress dose of hydrocortisone is not beneficial in patients with classic congenital adrenal hyperplasia undergoing short-term, high-intensity exercise. J Clin Endocrinol Metab. 2004;89(8):3679–84.PubMedCrossRefGoogle Scholar
  175. 175.
    Horner JM, Hintz RL, Luetscher JA. The role of renin and angiotensin in salt-losing, 21-hydroxylase-deficient congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1979;48(5):776–83.PubMedCrossRefGoogle Scholar
  176. 176.
    Ulick S, Eberlein WR, Bliffeld AR, Chu MD, Bongiovanni AM. Evidence for an aldosterone biosynthetic defect in congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1980;51(6):1346–53.PubMedCrossRefGoogle Scholar
  177. 177.
    Ames RP, Borkowski AJ, Sicinski AM, Laragh JH. Prolonged infusions of angiotensin II and norepinephrine and blood pressure, electrolyte balance, and aldosterone and cortisol secretion in normal man and in cirrhosis with ascites. J Clin Invest. 1965;44:1171–86.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Rayyis SS, Horton R. Effect of angiotensin II on adrenal and pituitary function in man. J Clin Endocrinol Metab. 1971;32:539.PubMedCrossRefGoogle Scholar
  179. 179.
    Rosler A, Levine LS, Schneider B, Novogroder M, New MI. The interrelationship of sodium balance, plasma renin activity, and ACTH in congenital adrenal hyperplasias. J Clin Endocrinol Metab. 1977;45:500.PubMedCrossRefGoogle Scholar
  180. 180.
    Brook CG, Zachmann M, Prader A, Murset G. Experience with long-term therapy in congenital adrenal hyperplasia. J Pediatr. 1974;85(1):12–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Silva IN, Kater CE, Cunha CF, Viana MB. Randomised controlled trial of growth effect of hydrocortisone in congenital adrenal hyperplasia. Arch Dis Child. 1997;77(3):214–8.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    DiMartino-Nardi J, Stoner E, O'Connell A, New MI. The effect of treatment of final height in classical congenital adrenal hyperplasia (CAH). Acta Endocrinol Suppl (Copenh). 1986;279:305–14.Google Scholar
  183. 183.
    Jaaskelainen J, Voutilainen R. Growth of patients with 21-hydroxylase deficiency: an analysis of the factors influencing adult height. Pediatr Res. 1997;41(1):30–3.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    New MI, Gertner JM, Speiser PW, Del Balzo P. Growth and final height in classical and nonclassical 21-hydroxylase deficiency. J Endocrinol Investig. 1989;12(8 Suppl 3):91–5.Google Scholar
  185. 185.
    Giordano R, Guaraldi F, Marinazzo E, Fumarola F, Rampino A, Berardelli R, et al. Improvement of anthropometric and metabolic parameters, and quality of life following treatment with dual-release hydrocortisone in patients with Addison's disease. Endocrine. 2016;51(2):360–8.PubMedCrossRefGoogle Scholar
  186. 186.
    Mallappa A, Sinaii N, Kumar P, Whitaker MJ, Daley LA, Digweed D, et al. A phase 2 study of Chronocort, a modified-release formulation of hydrocortisone, in the treatment of adults with classic congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2015;100(3):1137–45.PubMedCrossRefGoogle Scholar
  187. 187.
    Verma S, VanRyzin C, Sinaii N, Kim MS, Nieman LK, Ravindran S, et al. A pharmacokinetic and pharmacodynamic study of delayed- and extended-release hydrocortisone (Chronocort™) vs. conventional hydrocortisone (Cortef™) in the treatment of congenital adrenal hyperplasia. Clin Endocrinol. 2010;72(4):441–7.CrossRefGoogle Scholar
  188. 188.
    Whitaker MJ, Spielmann S, Digweed D, Huatan H, Eckland D, Johnson TN, et al. Development and testing in healthy adults of oral hydrocortisone granules with taste masking for the treatment of neonates and infants with adrenal insufficiency. J Clin Endocrinol Metab. 2015;100(4):1681–8.PubMedCrossRefGoogle Scholar
  189. 189.
    Zorrilla EP, Heilig M, de Wit H, Shaham Y. Behavioral, biological, and chemical perspectives on targeting CRF(1) receptor antagonists to treat alcoholism. Drug Alcohol Depend. 2013;128(3):175–86.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Auchus RJ, Buschur EO, Chang AY, Hammer GD, Ramm C, Madrigal D, et al. Abiraterone acetate to lower androgens in women with classic 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2014;99(8):2763–70.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Zinkham WH, Kickler T, Borel J, Moser HW. Lorenzo's oil and thrombocytopenia in patients with adrenoleukodystrophy [letter]. N Engl J Med. 1993;328(15):1126–7.PubMedCrossRefGoogle Scholar
  192. 192.
    Aubourg P, Blanche S, Jambaque I, Rocchiccioli F, Kalifa G, Naud-Saudreau C, et al. Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation. N Engl J Med. 1990;322(26):1860–6.PubMedCrossRefGoogle Scholar
  193. 193.
    Krivit W, Lockman LA, Watkins PA, Hirsch J, Shapiro EG. The future for treatment by bone marrow transplantation for adrenoleukodystrophy, metachromatic leukodystrophy, globoid cell leukodystrophy and Hurler syndrome. J Inherit Metab Dis. 1995;18(4):398–412.PubMedCrossRefGoogle Scholar
  194. 194.
    Bethune JE. The adrenal cortex. 2nd ed. Kalamazoo: The Upjohn Company; 1975.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kathleen E. Bethin
    • 1
    • 2
  • Indrajit Majumdar
    • 3
    • 4
  • Louis J. Muglia
    • 5
    • 6
  1. 1.Department of PediatricsUniversity at Buffalo Jacobs School of Medicine and Biomedical SciencesBuffaloUSA
  2. 2.Division of Pediatric Endocrinology and DiabetesUBMD PediatricsBuffaloUSA
  3. 3.Pediatrics, Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, State University of New YorkBuffaloUSA
  4. 4.Pediatrics, Division of Pediatric Endocrinology and DiabetesJohn R. Oishei Children’s HospitalBuffaloUSA
  5. 5.Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiUSA
  6. 6.Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations