Skip to main content

Endocrinologic Sequelae of Anorexia Nervosa and Obesity

  • Chapter
  • First Online:

Abstract

Anorexia nervosa (AN) is a severe psychiatric and medical condition. Eighty-five percent of patients with AN present between the ages of 13 and 20 years during a critical period for growth, pubertal development, and maximal bone accretion that culminates in peak bone mass. The disorder can result in a compromise in each of these important endocrinologic events, with lifelong sequelae. Recent trends demonstrate an earlier age of onset of AN, and it is recognized that onset at a young age is associated with poor growth and bone health outcomes. More boys are also presenting with restricted eating, with accompanying testosterone deficiency and other endocrine alterations. Patients with AN have a characteristic clinical picture of endocrine dysfunction, including amenorrhea in girls, abnormal temperature regulation, elevated growth hormone (GH) levels, hypercortisolemia, and abnormal eating suggestive of hypothalamic or pituitary dysfunction. Therefore, endocrine function has been studied extensively in these patients. The multiple endocrine abnormalities appear to represent an adaptation to the starvation state.

Obesity, defined by weight above the 95% for age and gender based on standardized growth curves (Centers for Disease Control and Prevention (CDC) (2000)), is a growing public health crisis in the United States and worldwide. Over 30% of children and adolescents are overweight or obese, almost 17% are obese, and the prevalence does not appear to be plateauing in this age range. The accumulation of adiposity during puberty contributes to the development of multiple metabolic and endocrinologic abnormalities. Adolescents are growing rapidly and progressing through pubertal changes and, therefore, teleologically are programmed for efficiency in fuel utilization in preparation for the reproductive phase in life. Therefore, when adolescents gain excess weight and become obese, the physiologic insulin resistance and high levels of growth hormone, estrogens and androgens, lead to pathologic insulin resistance and resultant abnormalities in glycemia, lipids, liver function, musculoskeletal functioning, and reproductive function. In addition, obese adolescents demonstrate an endocrine profile that in some aspects is the polar opposite from anorexia nervosa, but with some overlapping features including amenorrhea, abnormal growth hormone secretion, hypercortisolemia, and altered appetite and metabolic rate due to central signaling pathway disturbances. Obesity clearly represents a pathologic state, that of excess adiposity resulting in other compensatory mechanisms being activated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bruch H. Thin fat people. J Am Med Womens Assoc. 1973;28(4):187–8.

    CAS  Google Scholar 

  2. Smink FR, van Hoeken D, Hoek HW. Epidemiology of eating disorders: incidence, prevalence and mortality rates. Curr Psychiatry Rep. Aug 2012;14(4):406–14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lucas AR, Beard CM, O'Fallon WM, Kurland LT. 50-year trends in the incidence of anorexia nervosa in Rochester, Minn.: a population-based study. Am J Psychiatry. 1991;148(7):917–22.

    Article  CAS  PubMed  Google Scholar 

  4. Shu CY, Limburg K, Harris C, McCormack J, Hoiles KJ, Hamilton MJ, et al. Clinical presentation of eating disorders in young males at a tertiary setting. J Eat Disord. 2015;3(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Misra M, Klibanski A. Neuroendocrine consequences of anorexia nervosa in adolescents. Endocr Dev. 2010;17:197–214.

    Article  CAS  PubMed  Google Scholar 

  6. Donaldson AA, Gordon CM. Skeletal complications of eating disorders. Metabolism. 2015;64(9):943–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Favaro A, Caregaro L, Tenconi E, Bosello R, Santonastaso P. Time trends in age at onset of anorexia nervosa and bulimia nervosa. J Clin Psychiatry. 2009;70(12):1715–21.

    Article  PubMed  Google Scholar 

  8. Favaro A, Tenconi E, Degortes D, Soave M, Zanetti T, Nardi MT, et al. Association between low height and eating disorders: cause or effect? Int J Eat Disord. 2007;40(6):549–53.

    Article  PubMed  Google Scholar 

  9. Hall CH, Hewitt G, Stevens SL. Assessment and management of bone health in adolescents with anorexia nervosa. Part two: bone health in adolescents with anorexia nervosa. J Pediatr Adolesc Gynecol. 2008;21(4):221–4.

    Article  PubMed  Google Scholar 

  10. Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington: American Psychiatric Publishing; 2013.

    Book  Google Scholar 

  11. Gold PW, Gwirtsman H, Avgerinos PC, Nieman LK, Gallucci WT, Kaye W, et al. Abnormal hypothalamic-pituitary-adrenal function in anorexia nervosa. Pathophysiologic mechanisms in underweight and weight-corrected patients. N Engl J Med. 1986;314(21):1335–42.

    Article  CAS  PubMed  Google Scholar 

  12. Licinio J, Wong ML, Gold PW. The hypothalamic-pituitary-adrenal axis in anorexia nervosa. Psychiatry Res. 1996;62(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  13. Boyar RM, Hellman LD, Roffwarg H, Katz J, Zumoff B, O'Connor J, et al. Cortisol secretion and metabolism in anorexia nervosa. N Engl J Med. 1977;296(4):190–3.

    Article  CAS  PubMed  Google Scholar 

  14. Walsh BT, Roose SP, Katz JL, Dyrenfurth I, Wright L, Vande Wiele R, et al. Hypothalamic-pituitary-adrenal-cortical activity in anorexia nervosa and bulimia. Psychoneuroendocrinology. 1987;12(2):131–40.

    Article  CAS  PubMed  Google Scholar 

  15. Misra M, Miller KK, Almazan C, Ramaswamy K, Lapcharoensap W, Worley M, et al. Alterations in cortisol secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J Clin Endocrinol Metab. 2004;89(10):4972–80.

    Article  CAS  PubMed  Google Scholar 

  16. Doerr P, Fichter M, Pirke KM, Lund R. Relationship between weight gain and hypothalamic pituitary adrenal function in patients with anorexia nervosa. J Steroid Biochem. 1980;13(5):529–37.

    Article  CAS  PubMed  Google Scholar 

  17. Schweitzer I, Szmukler GI, Maguire KP, Harrison LC, Tuckwell V, Davies BM. The dexamethasone suppression test in anorexia nervosa. The influence of weight, depression, adrenocorticotrophic hormone and dexamethasone. Br J Psychiatry. 1990;157:713–7.

    Article  CAS  PubMed  Google Scholar 

  18. Estour B, Pugeat M, Lang F, Lejeune H, Broutin F, Pellet J, et al. Rapid escape of cortisol from suppression in response to i.v. dexamethasone in anorexia nervosa. Clin Endocrinol. 1990;33(1):45–52.

    Article  CAS  Google Scholar 

  19. Hotta M, Shibasaki T, Masuda A, Imaki T, Demura H, Ling N, et al. The responses of plasma adrenocorticotropin and cortisol to corticotropin-releasing hormone (CRH) and cerebrospinal fluid immunoreactive CRH in anorexia nervosa patients. J Clin Endocrinol Metab. 1986;62(2):319–24.

    Article  CAS  PubMed  Google Scholar 

  20. Sirinathsinghji DJ, Mills IH. Concentration patterns of plasma dehydroepiandrosterone, delta 5-androstenediol and their sulphates, testosterone and cortisol in normal healthy women and in women with anorexia nervosa. Acta Endocrinol. 1985;108(2):255–60.

    CAS  Google Scholar 

  21. Devesa J, Pérez-Fernández R, Bokser L, Gaudiero GJ, Lima L, Casanueva FF. Adrenal androgen secretion and dopaminergic activity in anorexia nervosa. Horm Metab Res. 1988;20(1):57–60.

    Article  CAS  PubMed  Google Scholar 

  22. Monteleone P, Luisi M, Colurcio B, Casarosa E, Monteleone P, Ioime R, et al. Plasma levels of neuroactive steroids are increased in untreated women with anorexia nervosa or bulimia nervosa. Psychosom Med. 2001;63(1):62–8.

    Article  CAS  PubMed  Google Scholar 

  23. Estour B, Germain N, Diconne E, Frere D, Cottet-Emard JM, Carrot G, et al. Hormonal profile heterogeneity and short-term physical risk in restrictive anorexia nervosa. J Clin Endocrinol Metab. 2010;95(5):2203–10.

    Article  CAS  PubMed  Google Scholar 

  24. Miller KK, Lawson EA, Mathur V, Wexler TL, Meenaghan E, Misra M, et al. Androgens in women with anorexia nervosa and normal-weight women with hypothalamic amenorrhea. J Clin Endocrinol Metab. 2007;92(4):1334–9.

    Article  CAS  PubMed  Google Scholar 

  25. Gordon CM, Goodman E, Emans SJ, Grace E, Becker KA, Rosen CJ, et al. Physiologic regulators of bone turnover in young women with anorexia nervosa. J Pediatr. 2002;141(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  26. Divasta AD, Feldman HA, Giancaterino C, Rosen CJ, Leboff MS, Gordon CM. The effect of gonadal and adrenal steroid therapy on skeletal health in adolescents and young women with anorexia nervosa. Metabolism. 2012;61(7):1010–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. DiVasta AD, Feldman HA, Beck TJ, LeBoff MS, Gordon CM. Does hormone replacement normalize bone geometry in adolescents with anorexia nervosa? J Bone Miner Res. 2014;29(1):151–7.

    Article  CAS  PubMed  Google Scholar 

  28. Nozaki T, Tamai H, Matsubayashi S, Komaki G, Kobayashi N, Nakagawa T. Insulin response to intravenous glucose in patients with anorexia nervosa showing low insulin response to oral glucose. J Clin Endocrinol Metab. 1994;79(1):217–22.

    CAS  PubMed  Google Scholar 

  29. Castillo M, Scheen A, Lefebvre PJ, Luyckx AS. Insulin-stimulated glucose disposal is not increased in anorexia nervosa. J Clin Endocrinol Metab. 1985;60(2):311–4.

    Article  CAS  PubMed  Google Scholar 

  30. Zuniga-Guajardo S, Garfinkel PE, Zinman B. Changes in insulin sensitivity and clearance in anorexia nervosa. Metabolism. 1986;35(12):1096–100.

    Article  CAS  PubMed  Google Scholar 

  31. Gordon CM, Emans SJ, DuRant RH, Mantzoros C, Grace E, Harper GP, et al. Endocrinologic and psychological effects of short-term dexamethasone in anorexia nervosa. Eat Weight Disord. 2000;5(3):175–82.

    CAS  PubMed  Google Scholar 

  32. Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J Clin Invest. 2003;111(9):1409–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grinspoon S, Gulick T, Askari H, Landt M, Lee K, Anderson E, et al. Serum leptin levels in women with anorexia nervosa. J Clin Endocrinol Metab. 1996;81(11):3861–3.

    CAS  PubMed  Google Scholar 

  34. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382(6588):250–2.

    Article  CAS  PubMed  Google Scholar 

  35. Audi L, Mantzoros CS, Vidal-Puig A, Vargas D, Gussinye M, Carrascosa A. Leptin in relation to resumption of menses in women with anorexia nervosa. Mol Psychiatry. 1998;3(6):544–7.

    Article  CAS  PubMed  Google Scholar 

  36. Barash IA, Cheung CC, Weigle DS, Ren H, Kabigting EB, Kuijper JL, et al. Leptin is a metabolic signal to the reproductive system. Endocrinology. 1996;137(7):3144–7.

    Article  CAS  PubMed  Google Scholar 

  37. Sienkiewicz E, Magkos F, Aronis KN, Brinkoetter M, Chamberland JP, Chou S, et al. Long-term metreleptin treatment increases bone mineral density and content at the lumbar spine of lean hypoleptinemic women. Metabolism. 2011;60(9):1211–21.

    Article  CAS  PubMed  Google Scholar 

  38. Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, et al. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med. 2004;351(10):987–97.

    Article  CAS  PubMed  Google Scholar 

  39. Karczewska-Kupczewska M, Straczkowski M, Adamska A, Nikołajuk A, Otziomek E, Górska M, et al. Insulin sensitivity, metabolic flexibility, and serum adiponectin concentration in women with anorexia nervosa. Metabolism. 2010;59(4):473–7.

    Article  CAS  PubMed  Google Scholar 

  40. Tagami T, Satoh N, Usui T, Yamada K, Shimatsu A, Kuzuya H. Adiponectin in anorexia nervosa and bulimia nervosa. J Clin Endocrinol Metab. 2004;89(4):1833–7.

    Article  CAS  PubMed  Google Scholar 

  41. Misra M, Miller KK, Cord J, Prabhakaran R, Herzog DB, Goldstein M, et al. Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J Clin Endocrinol Metab. 2007;92(6):2046–52.

    Article  CAS  PubMed  Google Scholar 

  42. Modan-Moses D, Stein D, Pariente C, Yaroslavsky A, Ram A, Faigin M, et al. Modulation of adiponectin and leptin during refeeding of female anorexia nervosa patients. J Clin Endocrinol Metab. 2007;92(5):1843–7.

    Article  CAS  PubMed  Google Scholar 

  43. Russell M, Misra M. Influence of ghrelin and adipocytokines on bone mineral density in adolescent female athletes with amenorrhea and eumenorrheic athletes. Med Sport Sci. 2010;55:103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gordon CM. Clinical practice. Functional hypothalamic amenorrhea. N Engl J Med. 2010;363(4):365–71.

    Article  CAS  PubMed  Google Scholar 

  45. Landon J, Greenwood FC, Stamp TC, Wynn V. The plasma sugar, free fatty acid, cortisol, and growth hormone response to insulin, and the comparison of this procedure with other tests of pituitary and adrenal function. II. In patients with hypothalamic or pituitary dysfunction or anorexia nervosa. J Clin Invest. 1966;45(4):437–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hurd HP, Palumbo PJ, Gharib H. Hypothalamic-endocrine dysfunction in anorexia nervosa. Mayo Clin Proc. 1977;52(11):711–6.

    CAS  PubMed  Google Scholar 

  47. Garfinkel PE, Brown GM, Stancer HC, Moldofsky H. Hypothalamic-pituitary function in anorexia nervosa. Arch Gen Psychiatry. 1975;32(6):739–44.

    Article  CAS  PubMed  Google Scholar 

  48. Newman MM, Halmi KA. The endocrinology of anorexia nervosa and bulimia nervosa. Endocrinol Metab Clin N Am. 1988;17(1):195–212.

    CAS  Google Scholar 

  49. Fazeli PK, Lawson EA, Prabhakaran R, Miller KK, Donoho DA, Clemmons DR, et al. Effects of recombinant human growth hormone in anorexia nervosa: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2010;95(11):4889–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Casper RC, Davis JM, Pandey GN. The effect of the nutritional status and weight changes on hypothalamic function test in anorexia nervosa. In: Vigersky RA, editor. Anorexia nervosa. New York: Raven Press; 1977. p. 137–48.

    Google Scholar 

  51. Sherman BM, Halmi KA. Effect of nutritional rehabilitation on hypothalamic-pituitary function in anorexia nervosa. In: Vigersky RA, editor. Anorexia nervosa. New York: Raven Press; 1977. p. 211–24.

    Google Scholar 

  52. Sizonenko PC, Rabinovitch A, Schneider P, Paunier L, Wollheim CB, Zahnd G. Plasma growth hormone, insulin, and glucagon responses to arginine infusion in children and adolescents with idiopathic short stature, isolated growth hormone deficiency, panhypopituitarism, and anorexia nervosa. Pediatr Res. 1975;9(9):733–8.

    Article  CAS  PubMed  Google Scholar 

  53. Blickle JF, Reville P, Stephan F, Meyer P, Demangeat C, Sapin R. The role of insulin, glucagon and growth hormone in the regulation of plasma glucose and free fatty acid levels in anorexia nervosa. Horm Metab Res. 1984;16(7):336–40.

    Article  CAS  PubMed  Google Scholar 

  54. Moshang TJ, Parks JS, Baker L, Vaidya V, Utiger RD, Bongiovanni AM, et al. Low serum triiodothyronine in patients with anorexia nervosa. J Clin Endocrinol Metab. 1975;40(3):470–3.

    Article  PubMed  Google Scholar 

  55. Leslie RD, Isaacs AJ, Gomez J, Raggatt PR, Bayliss R. Hypothalamo-pituitary-thyroid function in anorexia nervosa: influence of weight gain. Br Med J. 1978;2(6136):526–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wakeling A, de Souza VF, Gore MB, Sabur M, Kingstone D, Boss AM. Amenorrhoea, body weight and serum hormone concentrations, with particular reference to prolactin and thyroid hormones in anorexia nervosa. Psychol Med. 1979;9(2):265–72.

    Article  CAS  PubMed  Google Scholar 

  57. Vigersky RA, Loriaux DL, Andersen AE, Mecklenburg RS, Vaitukaitis JL. Delayed pituitary hormone response to LRF and TRF in patients with anorexia nervosa and with secondary amenorrhea associated with simple weight loss. J Clin Endocrinol Metab. 1976;43(4):893–900.

    Article  CAS  PubMed  Google Scholar 

  58. Jeuniewic N, Brown GM, Garfinkel PE, Moldofsky H. Hypothalamic function as related to body weight and body fat in anorexia nervosa. Psychosom Med. 1978;40(3):187–98.

    Article  CAS  PubMed  Google Scholar 

  59. Boyar RM, Katz J, Finkelstein JW, Kapen S, Weiner H, Weitzman ED, et al. Anorexia nervosa. Immaturity of the 24-hour luteinizing hormone secretory pattern. N Engl J Med. 1974;291(17):861–5.

    Article  CAS  PubMed  Google Scholar 

  60. Falk JR, Halmi KA. Amenorrhea in anorexia nervosa: examination of the critical body weight hypothesis. Biol Psychiatry. 1982;17(7):799–806.

    CAS  PubMed  Google Scholar 

  61. Knuth UA, Hull MG, Jacobs HS. Amenorrhoea and loss of weight. Br J Obstet Gynaecol. 1977;84(11):801–7.

    Article  CAS  PubMed  Google Scholar 

  62. Frisch RE, McArthur JW. Menstrual cycles: fatness as a determinant of minimum weight for height necessary for their maintenance or onset. Science. 1974;185(4155):949–51.

    Article  CAS  PubMed  Google Scholar 

  63. Shomento SH, Kreipe RE. Menstruation and fertility following anorexia nervosa. Adolesc Pediatr Gynecol. 1995;7(3):142–6.

    Article  Google Scholar 

  64. Hotta M, Shibasaki T, Sato K, Demura H. The importance of body weight history in the occurrence and recovery of osteoporosis in patients with anorexia nervosa: evaluation by dual X-ray absorptiometry and bone metabolic markers. Eur J Endocrinol. 1998;139(3):276–83.

    Article  CAS  PubMed  Google Scholar 

  65. Katz JL, Boyar R, Roffwarg H, Hellman L, Weiner H. Weight and circadian luteinizing hormone secretory pattern in anorexia nervosa. Psychosom Med. 1978;40(7):549–67.

    Article  CAS  PubMed  Google Scholar 

  66. Arimura C, Nozaki T, Takakura S, Kawai K, Takii M, Sudo N, et al. Predictors of menstrual resumption by patients with anorexia nervosa. Eat Weight Disord. 2010;15(4):e226–33.

    CAS  PubMed  Google Scholar 

  67. Mecklenburg RS, Loriaux DL, Thompson RH, Andersen AE, Lipsett MB. Hypothalamic dysfunction in patients with anorexia nervosa. Medicine (Baltimore). 1974;53(2):147–59.

    Article  CAS  Google Scholar 

  68. Hill P, Wynder F. Diet and prolactin release. Lancet. 1976;2(7989):806–7.

    Article  CAS  PubMed  Google Scholar 

  69. Nishita JK, Ellinwood EHJ, Rockwell WJ, Kuhn CM, Hoffman GWJ, McCall WV, et al. Abnormalities in the response of plasma arginine vasopressin during hypertonic saline infusion in patients with eating disorders. Biol Psychiatry. 1989;26(1):73–86.

    Article  CAS  PubMed  Google Scholar 

  70. Demitrack MA, Lesem MD, Listwak SJ, Brandt HA, Jimerson DC, Gold PW. CSF oxytocin in anorexia nervosa and bulimia nervosa: clinical and pathophysiologic considerations. Am J Psychiatry. 1990;147(7):882–6.

    Article  CAS  PubMed  Google Scholar 

  71. Bailer UF, Kaye WH. A review of neuropeptide and neuroendocrine dysregulation in anorexia and bulimia nervosa. Curr Drug Targets CNS Neurol Disord. 2003;2(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  72. Tolle V, Kadem M, Bluet-Pajot MT, Frere D, Foulon C, Bossu C, et al. Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women. J Clin Endocrinol Metab. 2003;88(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  73. Soriano-Guillén L, Barrios V, Campos-Barros A, Argente J. Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation. J Pediatr. 2004;144(1):36–42.

    Article  PubMed  CAS  Google Scholar 

  74. Misra M, Miller KK, Tsai P, Gallagher K, Lin A, Lee N, et al. Elevated peptide YY levels in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab. 2006;91(3):1027–33.

    Article  CAS  PubMed  Google Scholar 

  75. Stock S, Leichner P, Wong AC, Ghatei MA, Kieffer TJ, Bloom SR, et al. Ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents. J Clin Endocrinol Metab. 2005;90(4):2161–8.

    Article  CAS  PubMed  Google Scholar 

  76. Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991;73(3):555–63.

    Article  CAS  PubMed  Google Scholar 

  77. Gilsanz V, Roe TF, Mora S, Costin G, Goodman WG. Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med. 1991;325(23):1597–600.

    Article  CAS  PubMed  Google Scholar 

  78. Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75(4):1060–5.

    CAS  PubMed  Google Scholar 

  79. Rigotti NA, Nussbaum SR, Herzog DB, Neer RM. Osteoporosis in women with anorexia nervosa. N Engl J Med. 1984;311(25):1601–6.

    Article  CAS  PubMed  Google Scholar 

  80. Kaplan FS, Pertschuk M, Fallon M, Haddad J. Osteoporosis and hip fracture in a young woman with anorexia nervosa. Clin Orthop Relat Res. 1986;212:250–4.

    Google Scholar 

  81. Bachrach LK, Guido D, Katzman D, Litt IF, Marcus R. Decreased bone density in adolescent girls with anorexia nervosa. Pediatrics. 1990;86(3):440–7.

    CAS  PubMed  Google Scholar 

  82. Stefanis N, Mackintosh C, Abraha HD, Treasure J, Moniz C. Dissociation of bone turnover in anorexia nervosa. Ann Clin Biochem. 1998;35(Pt 6):709–16.

    Article  PubMed  Google Scholar 

  83. Klibanski A, Biller BM, Schoenfeld DA, Herzog DB, Saxe VC. The effects of estrogen administration on trabecular bone loss in young women with anorexia nervosa. J Clin Endocrinol Metab. 1995;80(3):898–904.

    CAS  PubMed  Google Scholar 

  84. Golden NH, Lanzkowsky L, Schebendach J, Palestro CJ, Jacobson MS, Shenker IR. The effect of estrogen-progestin treatment on bone mineral density in anorexia nervosa. J Pediatr Adolesc Gynecol. 2002;15(3):135–43.

    Article  PubMed  Google Scholar 

  85. Liu SL, Lebrun CM. Effect of oral contraceptives and hormone replacement therapy on bone mineral density in premenopausal and perimenopausal women: a systematic review. Br J Sports Med. 2006;40(1):11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grinspoon S, Baum H, Lee K, Anderson E, Herzog D, Klibanski A. Effects of short-term recombinant human insulin-like growth factor I administration on bone turnover in osteopenic women with anorexia nervosa. J Clin Endocrinol Metab. 1996;81(11):3864–70.

    CAS  PubMed  Google Scholar 

  87. Gordon CM, Grace E, Emans SJ, Goodman E, Crawford MH, Leboff MS. Changes in bone turnover markers and menstrual function after short-term oral DHEA in young women with anorexia nervosa. J Bone Miner Res. 1999;14(1):136–45.

    Article  CAS  PubMed  Google Scholar 

  88. Misra M, McGrane J, Miller KK, Goldstein MA, Ebrahimi S, Weigel T, et al. Effects of rhIGF-1 administration on surrogate markers of bone turnover in adolescents with anorexia nervosa. Bone. 2009;45(3):493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Grinspoon S, Thomas L, Miller K, Herzog D, Klibanski A. Effects of recombinant human IGF-I and oral contraceptive administration on bone density in anorexia nervosa. J Clin Endocrinol Metab. 2002;87(6):2883–91.

    Article  CAS  PubMed  Google Scholar 

  90. Misra M, Katzman D, Miller KK, Mendes N, Snelgrove D, Russell M, et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res. 2011;26(10):2430–8.

    Article  CAS  PubMed  Google Scholar 

  91. Zumoff B, Walsh BT, Katz JL, Levin J, Rosenfeld RS, Kream J, et al. Subnormal plasma dehydroisoandrosterone to cortisol ratio in anorexia nervosa: a second hormonal parameter of ontogenic regression. J Clin Endocrinol Metab. 1983;56(4):668–72.

    Article  CAS  PubMed  Google Scholar 

  92. Gordon CM, Glowacki J, LeBoff MS. DHEA and the skeleton (through the ages). Endocrine. 1999;11(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  93. Miller KK, Grieco KA, Mulder J, Grinspoon S, Mickley D, Yehezkel R, et al. Effects of risedronate on bone density in anorexia nervosa. J Clin Endocrinol Metab. 2004;89(8):3903–6.

    Article  CAS  PubMed  Google Scholar 

  94. Golden NH, Iglesias EA, Jacobson MS, Carey D, Meyer W, Schebendach J, et al. Alendronate for the treatment of osteopenia in anorexia nervosa: a randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab. 2005;90(6):3179–85.

    Article  CAS  PubMed  Google Scholar 

  95. Kawai M, Devlin MJ, Rosen CJ. Fat targets for skeletal health. Nat Rev Rheumatol. 2009;5(7):365–72.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kawai M, de Paula FJ, Rosen CJ. New insights into osteoporosis: the bone-fat connection. J Intern Med. 2012;272(4):317–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, et al. Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab. 2009;94(6):2129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ecklund K, Vajapeyam S, Feldman HA, Buzney CD, Mulkern RV, Kleinman PK, et al. Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res. 2010;25(2):298–304.

    Article  PubMed  Google Scholar 

  99. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, et al. The IOC consensus statement: beyond the female athlete triad–relative energy deficiency in sport (RED-S). Br J Sports Med. 2014;48(7):491–7.

    Article  PubMed  Google Scholar 

  100. Wyshak G, Frisch RE, Albright TE, Albright NL, Schiff I, Witschi J. Nonalcoholic carbonated beverage consumption and bone fractures among women former college athletes. J Orthop Res. 1989;7(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  101. Wyshak G, Frisch RE. Carbonated beverages, dietary calcium, the dietary calcium/phosphorus ratio, and bone fractures in girls and boys. J Adolesc Health. 1994;15(3):210–5.

    Article  CAS  PubMed  Google Scholar 

  102. Wyshak G. Teenaged girls, carbonated beverage consumption, and bone fractures. Arch Pediatr Adolesc Med. 2000;154(6):610–3.

    Article  CAS  PubMed  Google Scholar 

  103. Treasure J, Claudino AM, Zucker N. Eating disorders. Lancet. 2010;375(9714):583–93.

    Article  PubMed  Google Scholar 

  104. Pitts S, Blood E, Divasta A, Gordon CM. Percentage body fat by dual-energy X-ray absorptiometry is associated with menstrual recovery in adolescents with anorexia nervosa. J Adolesc Health. 2014;54(6):739–41.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Golden NH, Carlson JL. The pathophysiology of amenorrhea in the adolescent. Ann N Y Acad Sci. 2008;1135(1):163–78.

    Article  PubMed  Google Scholar 

  106. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 1984;66(3):397–402.

    Article  CAS  PubMed  Google Scholar 

  107. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O'Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet. Oct 1998;20(2):111–2.

    Article  CAS  PubMed  Google Scholar 

  109. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O'Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348(12):1085–95.

    Article  CAS  PubMed  Google Scholar 

  110. Sanghvi A, Redman LM, Martin CK, Ravussin E, Hall KD. Validation of an inexpensive and accurate mathematical method to measure long-term changes in free-living energy intake. Am J Clin Nutr. 2015;102(2):353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cypess AM, Haft CR, Laughlin MR, Hu HH. Brown fat in humans: consensus points and experimental guidelines. Cell Metab. 2014;20(3):408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Singhal V, Maffazioli GD, Ackerman KE, Lee H, Elia EF, Woolley R, et al. Effect of chronic athletic activity on brown fat in young women. PLoS One. 2016;11(5):e0156353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Alwani RA, Schmit Jongbloed LW, de Jong FH, van der Lely AJ, de Herder WW, Feelders RA. Differentiating between Cushing's disease and pseudo-Cushing's syndrome: comparison of four tests. Eur J Endocrinol. 2014;170(4):477–86.

    Article  CAS  PubMed  Google Scholar 

  114. Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, et al. The diagnosis of Cushing's syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2008;93(5):1526–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.

    Article  CAS  PubMed  Google Scholar 

  116. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.

    Article  CAS  PubMed  Google Scholar 

  117. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome–a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469–80.

    Article  CAS  PubMed  Google Scholar 

  118. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Curr Opin Cardiol. 2006;21(1):1–6.

    Article  PubMed  Google Scholar 

  119. Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents. Lancet. 2007;369(9579):2059–61.

    Article  PubMed  Google Scholar 

  120. de Ferranti SD, Gauvreau K, Ludwig DS, Newburger JW, Rifai N. Inflammation and changes in metabolic syndrome abnormalities in US adolescents: findings from the 1988–1994 and 1999–2000 National Health and Nutrition Examination Surveys. Clin Chem. Jul 2006;52(7):1325–30.

    Article  PubMed  CAS  Google Scholar 

  121. American Diabetes Association. Standards of medical care in diabetes–2009. Diabetes Care. 2009;32(Suppl 1):S13–61.

    Article  PubMed Central  Google Scholar 

  122. Copeland KC, Silverstein J, Moore KR, Prazar GE, Raymer T, Shiffman RN, et al. Management of newly diagnosed type 2 diabetes mellitus (T2DM) in children and adolescents. Pediatrics. 2013;131(2):364–82.

    Article  PubMed  Google Scholar 

  123. Narasimhan S, Weinstock RS. Youth-onset type 2 diabetes mellitus: lessons learned from the TODAY study. Mayo Clin Proc. 2014;89(6):806–16.

    Article  PubMed  Google Scholar 

  124. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110(8):1093–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Albertsson-Wikland K, Rosberg S, Karlberg J, Groth T. Analysis of 24-hour growth hormone profiles in healthy boys and girls of normal stature: relation to puberty. J Clin Endocrinol Metab. 1994;78(5):1195–201.

    CAS  PubMed  Google Scholar 

  126. Iranmanesh A, Lizarralde G, Veldhuis JD. Age and relative adiposity are specific negative determinants of the frequency and amplitude of growth hormone (GH) secretory bursts and the half-life of endogenous GH in healthy men. J Clin Endocrinol Metab. 1991;73(5):1081–8.

    Article  CAS  PubMed  Google Scholar 

  127. Misra M, Bredella MA, Tsai P, Mendes N, Miller KK, Klibanski A. Lower growth hormone and higher cortisol are associated with greater visceral adiposity, intramyocellular lipids, and insulin resistance in overweight girls. Am J Physiol Endocrinol Metab. 2008;295(2):E385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Utz AL, Yamamoto A, Hemphill L, Miller KK. Growth hormone deficiency by growth hormone releasing hormone-arginine testing criteria predicts increased cardiovascular risk markers in normal young overweight and obese women. J Clin Endocrinol Metab. 2008;93(7):2507–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Makimura H, Stanley T, Mun D, You SM, Grinspoon S. The effects of central adiposity on growth hormone (GH) response to GH-releasing hormone-arginine stimulation testing in men. J Clin Endocrinol Metab. 2008;93(11):4254–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Carmichael JD, Danoff A, Milani D, Roubenoff R, Lesser ML, Livote E, et al. GH peak response to GHRH-arginine: relationship to insulin resistance and other cardiovascular risk factors in a population of adults aged 50–90. Clin Endocrinol. 2006;65(2):169–77.

    Article  CAS  Google Scholar 

  131. Stanley TL, Levitsky LL, Grinspoon SK, Misra M. Effect of body mass index on peak growth hormone response to provocative testing in children with short stature. J Clin Endocrinol Metab. 2009;94(12):4875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lewitt MS, Dent MS, Hall K. The insulin-like growth factor system in obesity, insulin resistance and type 2 diabetes mellitus. J Clin Med. 2014;3(4):1561–74.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Cornford AS, Barkan AL, Horowitz JF. Rapid suppression of growth hormone concentration by overeating: potential mediation by hyperinsulinemia. J Clin Endocrinol Metab. 2011;96(3):824–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Frystyk J, Vestbo E, Skjaerbaek C, Mogensen CE, Orskov H. Free insulin-like growth factors in human obesity. Metabolism. 1995;44(10 Suppl 4):37–44.

    Article  CAS  PubMed  Google Scholar 

  135. Gahete MD, Cordoba-Chacon J, Lin Q, Bruning JC, Kahn CR, Castano JP, et al. Insulin and IGF-I inhibit GH synthesis and release in vitro and in vivo by separate mechanisms. Endocrinology. 2013;154(7):2410–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Casanueva FF, Villanueva L, Dieguez C, Diaz Y, Cabranes JA, Szoke B, et al. Free fatty acids block growth hormone (GH) releasing hormone-stimulated GH secretion in man directly at the pituitary. J Clin Endocrinol Metab. 1987;65(4):634–42.

    Article  CAS  PubMed  Google Scholar 

  137. Cordido F, Peino R, Penalva A, Alvarez CV, Casanueva FF, Dieguez C. Impaired growth hormone secretion in obese subjects is partially reversed by acipimox-mediated plasma free fatty acid depression. J Clin Endocrinol Metab. 1996;81(3):914–8.

    CAS  PubMed  Google Scholar 

  138. Maccario M, Procopio M, Grottoli S, Oleandri SE, Razzore P, Camanni F, et al. In obesity the somatotrope response to either growth hormone-releasing hormone or arginine is inhibited by somatostatin or pirenzepine but not by glucose. J Clin Endocrinol Metab. 1995;80(12):3774–8.

    CAS  PubMed  Google Scholar 

  139. Pena-Bello L, Pertega-Diaz S, Outeirino-Blanco E, Garcia-Buela J, Tovar S, Sangiao-Alvarellos S, et al. Effect of oral glucose administration on rebound growth hormone release in normal and obese women: the role of adiposity, insulin sensitivity and ghrelin. PLoS One. 2015;10(3):e0121087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Rasmussen MH, Hvidberg A, Juul A, Main KM, Gotfredsen A, Skakkebaek NE, et al. Massive weight loss restores 24-hour growth hormone release profiles and serum insulin-like growth factor-I levels in obese subjects. J Clin Endocrinol Metab. 1995;80(4):1407–15.

    CAS  PubMed  Google Scholar 

  141. Berryman DE, Glad CA, List EO, Johannsson G. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2013;9(6):346–56.

    Article  CAS  PubMed  Google Scholar 

  142. Agha A, Monson JP. Modulation of glucocorticoid metabolism by the growth hormone - IGF-1 axis. Clin Endocrinol. 2007;66(4):459–65.

    CAS  Google Scholar 

  143. Ruminska M, Witkowska-Sedek E, Majcher A, Pyrzak B. Thyroid function in obese children and adolescents and its association with anthropometric and metabolic parameters. Adv Exp Med Biol. 2016;912:33–41.

    Article  PubMed  Google Scholar 

  144. Zawadski JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A, Givens JR, Haseltine FP, Merriam GR, editors. Polycystic ovary syndrome. Boston: Blackwell Scientific Publication; 1992. p. 377–84.

    Google Scholar 

  145. Dewailly D, Lujan ME, Carmina E, Cedars MI, Laven J, Norman RJ, et al. Definition and significance of polycystic ovarian morphology: a task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum Reprod Update. 2014;20(3):334–52.

    Article  CAS  PubMed  Google Scholar 

  146. Ibanez L, Potau N, Carrascosa A. Insulin resistance, premature adrenarche, and a risk of the Polycystic Ovary Syndrome (PCOS). Trends Endocrinol Metab. 1998;9(2):72–7.

    Article  CAS  PubMed  Google Scholar 

  147. Lee JM, Appugliese D, Kaciroti N, Corwyn RF, Bradley RH, Lumeng JC. Weight status in young girls and the onset of puberty. Pediatrics. 2007;119(3):e624–30.

    Article  PubMed  Google Scholar 

  148. Kaplowitz PB. Link between body fat and the timing of puberty. Pediatrics. 2008;121(Suppl 3):S208–17.

    Article  PubMed  Google Scholar 

  149. Burt Solorzano CM, McCartney CR. Obesity and the pubertal transition in girls and boys. Reproduction. 2010;140(3):399–410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Tomova A, Robeva R, Kumanov P. Influence of the body weight on the onset and progression of puberty in boys. J Pediatr Endocrinol Metab. 2015;28(7–8):859–65.

    PubMed  Google Scholar 

  151. Misra M, Klibanski A. Anorexia nervosa, obesity and bone metabolism. Pediatr Endocrinol Rev. 2013;11(1):21–33.

    PubMed  PubMed Central  Google Scholar 

  152. Pollock NK, Laing EM, Hamrick MW, Baile CA, Hall DB, Lewis RD. Bone and fat relationships in postadolescent black females: a pQCT study. Osteoporos Int. 2011;22(2):655–65.

    Article  CAS  PubMed  Google Scholar 

  153. Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res. 2005;20(12):2090–6.

    Article  PubMed  Google Scholar 

  154. Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;2(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  155. Walsh JS, Evans AL, Bowles S, Naylor KE, Jones KS, Schoenmakers I, et al. Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health. Am J Clin Nutr. 2016;103(6):1465–71.

    Article  CAS  PubMed  Google Scholar 

  156. Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, et al. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab. 2010;95(3):1247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, et al. Determinants of bone mineral density in obese premenopausal women. Bone. 2011;48(4):748–54.

    Article  PubMed  Google Scholar 

  158. Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J. Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial. JAMA. 2005;293(23):2873–83.

    Article  CAS  PubMed  Google Scholar 

  159. Inge TH, Courcoulas AP, Jenkins TM, Michalsky MP, Helmrath MA, Brandt ML, et al. Weight loss and health status 3 years after bariatric surgery in adolescents. N Engl J Med. 2016;374(2):113–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Gordon MD, MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fleischman, A., Gordon, C.M. (2018). Endocrinologic Sequelae of Anorexia Nervosa and Obesity. In: Radovick, S., Misra, M. (eds) Pediatric Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-73782-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73782-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73781-2

  • Online ISBN: 978-3-319-73782-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics