Skip to main content

Diabetes Insipidus

  • Chapter
  • First Online:

Abstract

Diabetes insipidus is a syndrome of dysregulated free water balance. It results either from vasopressin deficiency, usually due to inadequate secretion of vasopressin from the posterior pituitary gland (central diabetes insipidus), or from an impaired renal response to the antidiuretic effect of vasopressin (nephrogenic diabetes insipidus). In the absence of vasopressin-mediated urinary concentration, increased excretion (polyuria) of dilute urine leads to a loss of free water. Increased thirst will stimulate increased water intake (polydipsia), but if not replenished, the free water deficit leads to a hyperosmolar state characterized by plasma hypernatremia. Thus, the clinical hallmarks of diabetes insipidus are polyuria of inappropriately dilute urine and hyperosmolarity. In some patients with these findings, the diagnosis of diabetes insipidus will be clear. In many patients, the diagnosis may need to be confirmed with a provocative water deprivation or saline infusion test. Central diabetes insipidus may result from a wide variety of causes, including genetic and other congenital anomalies, pituitary injury (from trauma, surgery, or tumors), and systemic diseases that may disrupt vasopressin secretion. Nephrogenic diabetes insipidus can result from genetic and congenital disorders involving the kidneys, systemic conditions affecting renal function, and many drugs. An extensive evaluation may be required to determine the etiology of diabetes insipidus in a particular patient. Vasopressin and its analog desmopressin (dDAVP) are the specific therapies for central diabetes insipidus. Treatment of nephrogenic diabetes insipidus typically depends upon reversal of the underlying cause, but pharmacological treatment can be successful. Treating infants and postoperative patients with diabetes insipidus can be particularly challenging and requires additional management strategies and special care.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vokes T, Robertson GL. Physiology of vasopressin secretion. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1984. p. 127–55.

    Google Scholar 

  2. Knepper MA, Verbalis JG, Nielsen S. Role of aquaporins in water balance disorders. Curr Opin Nephrol Hypertens. 1997;6:367–871.

    Article  CAS  PubMed  Google Scholar 

  3. Nielsen S, Frokiaer JM, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82:205–44.

    Article  CAS  PubMed  Google Scholar 

  4. Schrier RW, Berl T, Anderson RJ. Osmotic and nonosmotic control of vasopressin release. Am J Phys. 1979;236:F321–32.

    CAS  Google Scholar 

  5. Robertson GL. Differential diagnosis of polyuria. Annu Rev Med. 1988;39:425–42.

    Article  CAS  PubMed  Google Scholar 

  6. Baylis PH, Cheetham T. Diabetes insipidus. Arch Dis Child. 1998;79:84–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oster JR, Singer I, Thatte L, Grant-Taylor I, Diego JM. The polyuria of solute diuresis. Arch Intern Med. 1997;157:721–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hammond DN, Moll GW, Robertson GL, Chelmicka- Schorr E. Hypodipsic hypernatremia with normal osmoregulation of vasopressin. N Engl J Med. 1986;315:433–6.

    Article  CAS  PubMed  Google Scholar 

  9. Adrogue HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342:1493–9.

    Article  CAS  PubMed  Google Scholar 

  10. Colle E, Ayoub E, Raile R. Hypertonic dehydration (hypernatremia): the role of feedings high in solutes. Pediatrics. 1958;22:5–12.

    CAS  PubMed  Google Scholar 

  11. Verbalis JG, Robinson AG, Moses AM. Post-operative and post-traumatic diabetes insipidus. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1984. p. 247–65.

    Google Scholar 

  12. Kauli R, Galatzer A, Laron Z. Treatment of diabetes insipidus in children and adolescents. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1985. p. 304–13.

    Google Scholar 

  13. Czernichow P, Pomerade R, Brauner R, Rappaport R. Neurogenic diabetes insipidus in children. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1985. p. 190–209.

    Google Scholar 

  14. Rogers DG. Morbid obesity in a young child. Clin Pediatr. 2000;39:169–71.

    Article  CAS  Google Scholar 

  15. Maghnie M, Cosi G, Genovese E, et al. Central diabetes insipidus in children and young adults. N Engl J Med. 2000;343:998–1007.

    Article  CAS  PubMed  Google Scholar 

  16. Werny D, Elfers C, Perez FA, Pihoker C, Roth CL. Pediatric central diabetes insipidus: brain malformations are common and few patients have idiopathic disease. J Clin Endocrinol Metab. 2015;100:3074–80.

    Article  CAS  PubMed  Google Scholar 

  17. Lees MM, Hodgkins P, Reardon W, et al. Frontonasal dysplasia with optic disc anomalies and other midline craniofacial defects: a report of six cases. Clin Dysmorphol. 1998;7:157–62.

    Article  CAS  PubMed  Google Scholar 

  18. Al Nofal A, Lteif A. Thiazide diuretics in the management of young children with central diabetes insipidus. J Pediatr. 2015;167:658–61.

    Article  PubMed  Google Scholar 

  19. Strom TM, Hortnagel K, Hofmann S, et al. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet. 1998;7:2021–8.

    Article  CAS  PubMed  Google Scholar 

  20. Pedersen EB, Lamm LU, Albertsen K, et al. Familial cranial diabetes insipidus: a report of five families. Genetic, diagnostic and therapeutic aspects. Q J Med. 1985;57:883–96.

    CAS  PubMed  Google Scholar 

  21. Bergeron C, Kovacs K, Ezrin C, Mizzen C. Hereditary diabetes insipidus: an immunohistochemical study of the hypothalamus and pituitary gland. Acta Neuropathol. 1991;81:345–8.

    Article  CAS  PubMed  Google Scholar 

  22. Rittig S, Robertson GL, Siggaard C, et al. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet. 1996;58:107–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Grant FD, Ahmadi A, Hosley CM, Majzoub JA. Two novel mutations of the vasopressin gene associated with familial diabetes insipidus and identification of an asymptomatic carrier infant. J Clin Endocrinol Metab. 1998;83:3958–64.

    CAS  PubMed  Google Scholar 

  24. Babey M, Kopp P, Robertson GL. Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat Rev Endocrinol. 2011;7:701–14.

    Article  CAS  PubMed  Google Scholar 

  25. Willcutts MD, Felner E, White PC. Autosomal recessive familial neurohypophyseal diabetes insipidus with continued secretion of mutant weakly active vasopressin. Hum Mol Genet. 1999;8:1303–7.

    Article  CAS  PubMed  Google Scholar 

  26. Greger NG, Kirkland RT, Clayton GW, Kirkland JL. Central diabetes insipidus: 22 years’ experience. Am J Dis Child. 1986;140:551–4.

    Article  CAS  PubMed  Google Scholar 

  27. Charmandari E, Brook CG. 20 years of experience in idiopathic central diabetes insipidus. Lancet. 1999;353:2212–3.

    Article  CAS  PubMed  Google Scholar 

  28. Alharfi IM, Stewart TC, Foster J, Morrison GC, Fraser DD. Central diabetes insipidus in pediatric severe traumatic brain injury. Ped Crit Care Med. 2013;14:203–9.

    Article  Google Scholar 

  29. Moses AM. Clinical and laboratory observations in the adult with diabetes insipidus and related syn- dromes. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1985. p. 156–75.

    Google Scholar 

  30. Mootha SL, Barkovich AJ, Grumbach MM, et al. Idiopathic hypothalamic diabetes insipidus, pituitary stalk thickening, and the occult intracranial germinoma in children and young adults. J Clin Endocrinol Metab. 1997;82:1362–7.

    CAS  PubMed  Google Scholar 

  31. Oiso Y, Robertson GL, Nørgaard JP, Juul KV. Treatment of neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab. 2013;98:3958–67.

    Article  CAS  PubMed  Google Scholar 

  32. Heinze HJ, Bercu BB. Acquired hypophysitis in adolescence. J Pediatr Endocrinol Metab. 1997;10:315–21.

    Article  CAS  PubMed  Google Scholar 

  33. Honegger J, Fahlbusch R, Bornemann A, et al. Lymphocytic and granulomatous hypophysitis: experience with nine cases. Neurosurgery. 1997;40:713–22.

    Article  CAS  PubMed  Google Scholar 

  34. Iwasaki Y, Oiso Y, Kondo K, et al. Aggravation of subclinical diabetes insipidus during pregnancy. N Engl J Med. 1991;324:522–6.

    Article  CAS  PubMed  Google Scholar 

  35. Fujiwara TM, Morgan K, Bichet DG. Molecular biology of diabetes insipidus. Annu Rev Med. 1995;46:331–43.

    Article  CAS  PubMed  Google Scholar 

  36. Schoneberg T, Schulz A, Biebermann H, et al. V2 vasopressin receptor dysfunction in nephrogenic diabetes insipidus caused by different molecular mechanisms. Hum Mutat. 1998;12:196–205.

    Article  CAS  PubMed  Google Scholar 

  37. Wildin RS, Cogdell DE, Valadez V. AVPR2 variants and V2 vasopressin receptor function in diabetes insipidus. Kidney Int. 1998;54:1909–22.

    Article  CAS  PubMed  Google Scholar 

  38. Feldman BJ, Rosenthal SM, Vargas GA, et al. Nephrogenic syndrome of inappropriate antidiuresis. N Engl J Med. 2005;352:1884–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kamsteeg EJ, Deen PM, van Os CH. Defective processing and trafficking of water channels in nephrogenic diabetes insipidus. Exp Nephrol. 2000;8:326–31.

    Article  CAS  PubMed  Google Scholar 

  40. Tamarappoo BK, Yang B, Verkman AS. Misfolding of mutant aquaporin-2 water channels in nephrogenic diabetes insipidus. J Biol Chem. 1999;274:34825–31.

    Article  CAS  PubMed  Google Scholar 

  41. Goji K, Kuwahara M, Gu Y, Matsuo M, Marumo F, Sasaki S. Novel mutations in aquaporin-2 gene in female siblings with nephrogenic diabetes insipidus: evidence of disrupted water channel function. J Clin Endocrinol Metab. 1998;83:3205–9.

    CAS  PubMed  Google Scholar 

  42. Kamsteeg EJ, Wormhoudt TA, Rijss JP, van Os CH, Deen PM. An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J. 1999;18:2394–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leung AK, Robson WL, Halperin ML. Polyuria in childhood. Clin Pediatr. 1991;30:634–40.

    Article  CAS  Google Scholar 

  44. Zietse R, Zoutendijk R, Hoorn EJ. Fluid, electrolyte and acid-base disorders associated with antibiotic therapy. Nat Rev Nephrol. 2009;5:193–202.

    Article  CAS  PubMed  Google Scholar 

  45. Bendz H, Aurell M. Drug-induced diabetes insipidus: incidence, prevention and management. Drug Saf. 1999;21:449–56.

    Article  CAS  PubMed  Google Scholar 

  46. Timmer RT, Sands JM. Lithium intoxication. J Am Soc Nephrol. 1999;10:666–74.

    CAS  PubMed  Google Scholar 

  47. Robertson GL. Diagnosis of diabetes insipidus. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1985. p. 176–89.

    Google Scholar 

  48. Dunger DB, Jr S, Grant DB, Yeoman L, Lightman SL. A short water deprivation test incorporating urinary arginine vasopressin estimations for the investigation of posterior pituitary function in children. Acta Endocrinol. 1988;117:13–8.

    CAS  Google Scholar 

  49. Mohn A, Acerini CL, Cheetham TD, Lightman SL, Dunger DB. Hypertonic saline test for the investigation of posterior pituitary function. Arch Dis Child. 1998;79:431–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kluge M, Riedll S, Erhart-Hofmann B, Hartmann J, Waldhauser F. Improved extraction procedure and RIA for determination of arginine8-vasopressin in plasma: role of premeasurement sample treatment and reference values in children. Clin Chem. 1999;45:98–103.

    CAS  PubMed  Google Scholar 

  51. Elster AD. Imaging of the sella: anatomy and pathology. Semin Ultrasound CT MR. 1993;14:182–94.

    Article  CAS  PubMed  Google Scholar 

  52. Columbo N, Berry I. Kucharcyzk, et al. Posterior pituitary gland: appearance on MR images in normal and pathological states. Radiology. 1987;165:481–5.

    Article  Google Scholar 

  53. Maghnie M, Villa A, Arico M, et al. Correlation between magnetic resonance imaging of posterior pituitary and neurohypophyseal function in children with diabetes insipidus. J Clin Endocrinol Metab. 1992;74:795–800.

    Article  CAS  PubMed  Google Scholar 

  54. Halimi P, Sigal R, Doyon D, Delivet S, Bouchard P, Pigeau I. Post-traumatic diabetes insipidus: MR demonstration of pituitary stalk rupture. J Comput Assist Tomogr. 1988;12(1):135–7.

    Article  CAS  PubMed  Google Scholar 

  55. Moses AM, Clayton B, Hochhauser L. Use of T1-weighted MR imaging to differentiate between primary polydipsia and central diabetes insipidus. Am J Neuroradiol. 1992;13:1273–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kilday J-P, Laughlin S, Urbach S, Bouffet E, Bartels U. Diabetes insipidus in pediatric germinomas of the suprasellar region: characteristic features and significance of the pituitary bright spot. J Neuro-Oncol. 2015;121:167–75.

    Article  Google Scholar 

  57. Di Iorgi N, Allegri AEM, Napoli F, et al. Central diabetes insipidus in children and young adults: etiological diagnosis and long-term outcome of idiopathic cases. J Clin Endocrinol Metab. 2014;99:1264–72.

    Article  PubMed  Google Scholar 

  58. Uribarra J, Kaskas M. Hereditary nephrogenic diabetes insipidus and bilateral nonobstructive hydronephrosis. Nephron. 1993;65:346–9.

    Article  Google Scholar 

  59. Robinson AG, Verbalis JG. Treatment of central diabetes mellitus. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1985. p. 292–303.

    Google Scholar 

  60. Richardson DW, Robinson AG. Desmopressin. Ann Intern Med. 1985;103:228–39.

    Article  CAS  PubMed  Google Scholar 

  61. Cobb WE, Spare S, Reichlin S. Neurogenic diabetes insipidus: management with dDAVP (1-desamino-8-D arginine vasopressin). Ann Intern Med. 1978;88:183–8.

    Article  CAS  PubMed  Google Scholar 

  62. Bryant WP, O’Marcaigh AS, Ledger GA, Zimmerman D. Aqueous vasopressin infusion during chemotherapy in patients with diabetes insipidus. Cancer. 1994;74:2589–92.

    Article  CAS  PubMed  Google Scholar 

  63. Rivkees SA, Dunbar N, Wilson TA. The management of central diabetes insipidus in infancy: desmopressin, low renal solute load formula, thiazide diuretics. J Pediatr Endocrinol Metab. 2007;20:459–69.

    Article  CAS  PubMed  Google Scholar 

  64. Blanco EJ, Lane AH, Aijaz N, Blumberg D, Wilson TA. Use of subcutaneous DDAVP in infants with central diabetes insipidus. J Pediatr Endocrinol Metab. 2006;19:919–25.

    Article  CAS  PubMed  Google Scholar 

  65. Libber S, Harrison H, Spector D. Treatment of nephrogenic diabetes insipidus with prostaglandin synthesis inhibitors. J Pediatr. 1986;108:305–11.

    Article  CAS  PubMed  Google Scholar 

  66. Kirchlechner V, Koller DY, Seidle R, Waldhauser F. Treatment of nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride. Arch Dis Child. 1999;80:548–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hoekstra JA, van Lieburg AF, Monmens LA, Hulstijn-Dirkmaat GM, Knoers VV. Cognitive and psychosocial functioning of patients with congenital nephrogenic diabetes insipidus. Am J Med Genet. 1996;61:81–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick D. Grant MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grant, F.D. (2018). Diabetes Insipidus. In: Radovick, S., Misra, M. (eds) Pediatric Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-73782-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73782-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73781-2

  • Online ISBN: 978-3-319-73782-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics