Advertisement

Diabetes Insipidus

  • Frederick D. Grant
Chapter

Abstract

Diabetes insipidus is a syndrome of dysregulated free water balance. It results either from vasopressin deficiency, usually due to inadequate secretion of vasopressin from the posterior pituitary gland (central diabetes insipidus), or from an impaired renal response to the antidiuretic effect of vasopressin (nephrogenic diabetes insipidus). In the absence of vasopressin-mediated urinary concentration, increased excretion (polyuria) of dilute urine leads to a loss of free water. Increased thirst will stimulate increased water intake (polydipsia), but if not replenished, the free water deficit leads to a hyperosmolar state characterized by plasma hypernatremia. Thus, the clinical hallmarks of diabetes insipidus are polyuria of inappropriately dilute urine and hyperosmolarity. In some patients with these findings, the diagnosis of diabetes insipidus will be clear. In many patients, the diagnosis may need to be confirmed with a provocative water deprivation or saline infusion test. Central diabetes insipidus may result from a wide variety of causes, including genetic and other congenital anomalies, pituitary injury (from trauma, surgery, or tumors), and systemic diseases that may disrupt vasopressin secretion. Nephrogenic diabetes insipidus can result from genetic and congenital disorders involving the kidneys, systemic conditions affecting renal function, and many drugs. An extensive evaluation may be required to determine the etiology of diabetes insipidus in a particular patient. Vasopressin and its analog desmopressin (dDAVP) are the specific therapies for central diabetes insipidus. Treatment of nephrogenic diabetes insipidus typically depends upon reversal of the underlying cause, but pharmacological treatment can be successful. Treating infants and postoperative patients with diabetes insipidus can be particularly challenging and requires additional management strategies and special care.

Keywords

Diabetes insipidus Hyperosmolality Polyuria Polydipsia Water balance Posterior pituitary gland Neurohypophysis Triple-phase response Vasopressin Desmopressin 

References

  1. 1.
    Vokes T, Robertson GL. Physiology of vasopressin secretion. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1984. p. 127–55.Google Scholar
  2. 2.
    Knepper MA, Verbalis JG, Nielsen S. Role of aquaporins in water balance disorders. Curr Opin Nephrol Hypertens. 1997;6:367–871.CrossRefPubMedGoogle Scholar
  3. 3.
    Nielsen S, Frokiaer JM, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82:205–44.CrossRefPubMedGoogle Scholar
  4. 4.
    Schrier RW, Berl T, Anderson RJ. Osmotic and nonosmotic control of vasopressin release. Am J Phys. 1979;236:F321–32.Google Scholar
  5. 5.
    Robertson GL. Differential diagnosis of polyuria. Annu Rev Med. 1988;39:425–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Baylis PH, Cheetham T. Diabetes insipidus. Arch Dis Child. 1998;79:84–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Oster JR, Singer I, Thatte L, Grant-Taylor I, Diego JM. The polyuria of solute diuresis. Arch Intern Med. 1997;157:721–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Hammond DN, Moll GW, Robertson GL, Chelmicka- Schorr E. Hypodipsic hypernatremia with normal osmoregulation of vasopressin. N Engl J Med. 1986;315:433–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Adrogue HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342:1493–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Colle E, Ayoub E, Raile R. Hypertonic dehydration (hypernatremia): the role of feedings high in solutes. Pediatrics. 1958;22:5–12.PubMedGoogle Scholar
  11. 11.
    Verbalis JG, Robinson AG, Moses AM. Post-operative and post-traumatic diabetes insipidus. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1984. p. 247–65.Google Scholar
  12. 12.
    Kauli R, Galatzer A, Laron Z. Treatment of diabetes insipidus in children and adolescents. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1985. p. 304–13.Google Scholar
  13. 13.
    Czernichow P, Pomerade R, Brauner R, Rappaport R. Neurogenic diabetes insipidus in children. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1985. p. 190–209.Google Scholar
  14. 14.
    Rogers DG. Morbid obesity in a young child. Clin Pediatr. 2000;39:169–71.CrossRefGoogle Scholar
  15. 15.
    Maghnie M, Cosi G, Genovese E, et al. Central diabetes insipidus in children and young adults. N Engl J Med. 2000;343:998–1007.CrossRefPubMedGoogle Scholar
  16. 16.
    Werny D, Elfers C, Perez FA, Pihoker C, Roth CL. Pediatric central diabetes insipidus: brain malformations are common and few patients have idiopathic disease. J Clin Endocrinol Metab. 2015;100:3074–80.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lees MM, Hodgkins P, Reardon W, et al. Frontonasal dysplasia with optic disc anomalies and other midline craniofacial defects: a report of six cases. Clin Dysmorphol. 1998;7:157–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Al Nofal A, Lteif A. Thiazide diuretics in the management of young children with central diabetes insipidus. J Pediatr. 2015;167:658–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Strom TM, Hortnagel K, Hofmann S, et al. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet. 1998;7:2021–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Pedersen EB, Lamm LU, Albertsen K, et al. Familial cranial diabetes insipidus: a report of five families. Genetic, diagnostic and therapeutic aspects. Q J Med. 1985;57:883–96.PubMedGoogle Scholar
  21. 21.
    Bergeron C, Kovacs K, Ezrin C, Mizzen C. Hereditary diabetes insipidus: an immunohistochemical study of the hypothalamus and pituitary gland. Acta Neuropathol. 1991;81:345–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Rittig S, Robertson GL, Siggaard C, et al. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet. 1996;58:107–17.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Grant FD, Ahmadi A, Hosley CM, Majzoub JA. Two novel mutations of the vasopressin gene associated with familial diabetes insipidus and identification of an asymptomatic carrier infant. J Clin Endocrinol Metab. 1998;83:3958–64.PubMedGoogle Scholar
  24. 24.
    Babey M, Kopp P, Robertson GL. Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat Rev Endocrinol. 2011;7:701–14.CrossRefPubMedGoogle Scholar
  25. 25.
    Willcutts MD, Felner E, White PC. Autosomal recessive familial neurohypophyseal diabetes insipidus with continued secretion of mutant weakly active vasopressin. Hum Mol Genet. 1999;8:1303–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Greger NG, Kirkland RT, Clayton GW, Kirkland JL. Central diabetes insipidus: 22 years’ experience. Am J Dis Child. 1986;140:551–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Charmandari E, Brook CG. 20 years of experience in idiopathic central diabetes insipidus. Lancet. 1999;353:2212–3.CrossRefPubMedGoogle Scholar
  28. 28.
    Alharfi IM, Stewart TC, Foster J, Morrison GC, Fraser DD. Central diabetes insipidus in pediatric severe traumatic brain injury. Ped Crit Care Med. 2013;14:203–9.CrossRefGoogle Scholar
  29. 29.
    Moses AM. Clinical and laboratory observations in the adult with diabetes insipidus and related syn- dromes. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1985. p. 156–75.Google Scholar
  30. 30.
    Mootha SL, Barkovich AJ, Grumbach MM, et al. Idiopathic hypothalamic diabetes insipidus, pituitary stalk thickening, and the occult intracranial germinoma in children and young adults. J Clin Endocrinol Metab. 1997;82:1362–7.PubMedGoogle Scholar
  31. 31.
    Oiso Y, Robertson GL, Nørgaard JP, Juul KV. Treatment of neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab. 2013;98:3958–67.CrossRefPubMedGoogle Scholar
  32. 32.
    Heinze HJ, Bercu BB. Acquired hypophysitis in adolescence. J Pediatr Endocrinol Metab. 1997;10:315–21.CrossRefPubMedGoogle Scholar
  33. 33.
    Honegger J, Fahlbusch R, Bornemann A, et al. Lymphocytic and granulomatous hypophysitis: experience with nine cases. Neurosurgery. 1997;40:713–22.CrossRefGoogle Scholar
  34. 34.
    Iwasaki Y, Oiso Y, Kondo K, et al. Aggravation of subclinical diabetes insipidus during pregnancy. N Engl J Med. 1991;324:522–6.CrossRefGoogle Scholar
  35. 35.
    Fujiwara TM, Morgan K, Bichet DG. Molecular biology of diabetes insipidus. Annu Rev Med. 1995;46:331–43.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schoneberg T, Schulz A, Biebermann H, et al. V2 vasopressin receptor dysfunction in nephrogenic diabetes insipidus caused by different molecular mechanisms. Hum Mutat. 1998;12:196–205.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wildin RS, Cogdell DE, Valadez V. AVPR2 variants and V2 vasopressin receptor function in diabetes insipidus. Kidney Int. 1998;54:1909–22.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Feldman BJ, Rosenthal SM, Vargas GA, et al. Nephrogenic syndrome of inappropriate antidiuresis. N Engl J Med. 2005;352:1884–90.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kamsteeg EJ, Deen PM, van Os CH. Defective processing and trafficking of water channels in nephrogenic diabetes insipidus. Exp Nephrol. 2000;8:326–31.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tamarappoo BK, Yang B, Verkman AS. Misfolding of mutant aquaporin-2 water channels in nephrogenic diabetes insipidus. J Biol Chem. 1999;274:34825–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Goji K, Kuwahara M, Gu Y, Matsuo M, Marumo F, Sasaki S. Novel mutations in aquaporin-2 gene in female siblings with nephrogenic diabetes insipidus: evidence of disrupted water channel function. J Clin Endocrinol Metab. 1998;83:3205–9.PubMedGoogle Scholar
  42. 42.
    Kamsteeg EJ, Wormhoudt TA, Rijss JP, van Os CH, Deen PM. An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J. 1999;18:2394–400.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Leung AK, Robson WL, Halperin ML. Polyuria in childhood. Clin Pediatr. 1991;30:634–40.CrossRefGoogle Scholar
  44. 44.
    Zietse R, Zoutendijk R, Hoorn EJ. Fluid, electrolyte and acid-base disorders associated with antibiotic therapy. Nat Rev Nephrol. 2009;5:193–202.CrossRefPubMedGoogle Scholar
  45. 45.
    Bendz H, Aurell M. Drug-induced diabetes insipidus: incidence, prevention and management. Drug Saf. 1999;21:449–56.CrossRefPubMedGoogle Scholar
  46. 46.
    Timmer RT, Sands JM. Lithium intoxication. J Am Soc Nephrol. 1999;10:666–74.PubMedGoogle Scholar
  47. 47.
    Robertson GL. Diagnosis of diabetes insipidus. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1985. p. 176–89.Google Scholar
  48. 48.
    Dunger DB, Jr S, Grant DB, Yeoman L, Lightman SL. A short water deprivation test incorporating urinary arginine vasopressin estimations for the investigation of posterior pituitary function in children. Acta Endocrinol. 1988;117:13–8.PubMedGoogle Scholar
  49. 49.
    Mohn A, Acerini CL, Cheetham TD, Lightman SL, Dunger DB. Hypertonic saline test for the investigation of posterior pituitary function. Arch Dis Child. 1998;79:431–4.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kluge M, Riedll S, Erhart-Hofmann B, Hartmann J, Waldhauser F. Improved extraction procedure and RIA for determination of arginine8-vasopressin in plasma: role of premeasurement sample treatment and reference values in children. Clin Chem. 1999;45:98–103.PubMedGoogle Scholar
  51. 51.
    Elster AD. Imaging of the sella: anatomy and pathology. Semin Ultrasound CT MR. 1993;14:182–94.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Columbo N, Berry I. Kucharcyzk, et al. Posterior pituitary gland: appearance on MR images in normal and pathological states. Radiology. 1987;165:481–5.CrossRefGoogle Scholar
  53. 53.
    Maghnie M, Villa A, Arico M, et al. Correlation between magnetic resonance imaging of posterior pituitary and neurohypophyseal function in children with diabetes insipidus. J Clin Endocrinol Metab. 1992;74:795–800.CrossRefPubMedGoogle Scholar
  54. 54.
    Halimi P, Sigal R, Doyon D, Delivet S, Bouchard P, Pigeau I. Post-traumatic diabetes insipidus: MR demonstration of pituitary stalk rupture. J Comput Assist Tomogr. 1988;12(1):135–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Moses AM, Clayton B, Hochhauser L. Use of T1-weighted MR imaging to differentiate between primary polydipsia and central diabetes insipidus. Am J Neuroradiol. 1992;13:1273–7.PubMedGoogle Scholar
  56. 56.
    Kilday J-P, Laughlin S, Urbach S, Bouffet E, Bartels U. Diabetes insipidus in pediatric germinomas of the suprasellar region: characteristic features and significance of the pituitary bright spot. J Neuro-Oncol. 2015;121:167–75.CrossRefGoogle Scholar
  57. 57.
    Di Iorgi N, Allegri AEM, Napoli F, et al. Central diabetes insipidus in children and young adults: etiological diagnosis and long-term outcome of idiopathic cases. J Clin Endocrinol Metab. 2014;99:1264–72.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Uribarra J, Kaskas M. Hereditary nephrogenic diabetes insipidus and bilateral nonobstructive hydronephrosis. Nephron. 1993;65:346–9.CrossRefGoogle Scholar
  59. 59.
    Robinson AG, Verbalis JG. Treatment of central diabetes mellitus. In: Czernichow P, Robinson AG, editors. Diabetes insipidus in man, Frontiers of hormone research, vol. 13. Basel: Karger; 1985. p. 292–303.Google Scholar
  60. 60.
    Richardson DW, Robinson AG. Desmopressin. Ann Intern Med. 1985;103:228–39.CrossRefPubMedGoogle Scholar
  61. 61.
    Cobb WE, Spare S, Reichlin S. Neurogenic diabetes insipidus: management with dDAVP (1-desamino-8-D arginine vasopressin). Ann Intern Med. 1978;88:183–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Bryant WP, O’Marcaigh AS, Ledger GA, Zimmerman D. Aqueous vasopressin infusion during chemotherapy in patients with diabetes insipidus. Cancer. 1994;74:2589–92.CrossRefPubMedGoogle Scholar
  63. 63.
    Rivkees SA, Dunbar N, Wilson TA. The management of central diabetes insipidus in infancy: desmopressin, low renal solute load formula, thiazide diuretics. J Pediatr Endocrinol Metab. 2007;20:459–69.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Blanco EJ, Lane AH, Aijaz N, Blumberg D, Wilson TA. Use of subcutaneous DDAVP in infants with central diabetes insipidus. J Pediatr Endocrinol Metab. 2006;19:919–25.CrossRefPubMedGoogle Scholar
  65. 65.
    Libber S, Harrison H, Spector D. Treatment of nephrogenic diabetes insipidus with prostaglandin synthesis inhibitors. J Pediatr. 1986;108:305–11.CrossRefPubMedGoogle Scholar
  66. 66.
    Kirchlechner V, Koller DY, Seidle R, Waldhauser F. Treatment of nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride. Arch Dis Child. 1999;80:548–52.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hoekstra JA, van Lieburg AF, Monmens LA, Hulstijn-Dirkmaat GM, Knoers VV. Cognitive and psychosocial functioning of patients with congenital nephrogenic diabetes insipidus. Am J Med Genet. 1996;61:81–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicine, Division of EndocrinologyBoston Children’s HospitalBostonUSA
  2. 2.Department of Radiology, Division of Nuclear Medicine and Molecular ImagingHarvard Medical SchoolBostonUSA

Personalised recommendations