Skip to main content

Abstract

In this chapter, the test problem is introduced for the case of a standard single-stage design, meaning that no interim analysis is performed. The underlying parameters and distributional assumptions, the test problems, and the test statistics will be separately formulated for (composite) binary endpoints and for (composite) time-to-(first-)event endpoints. Moreover, approaches to calculate the required sample size are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, P., Borgan, Ø., Gill, R., & Keiding, N. (1993). Statistical models based on counting processes. New York: Springer.

    Book  Google Scholar 

  • Andersen, P. K., & Gill, R. D. (1982). Cox’s regression model for counting processes: A large sample study. The Annals of Statistics, 10, 1100–1120.

    Article  MathSciNet  Google Scholar 

  • Begum, N., & King, M. L. (2005). Most mean powerful test of a composite null against a composite alternative. Computational Statistics & Data Analysis, 49, 1079–1104.

    Article  MathSciNet  Google Scholar 

  • Beyersmann, J., Allignol, A., & Schumacher, M. (2012). Competing risks and multistate models with R. New York: Springer.

    Book  Google Scholar 

  • Blackwelder, W. C. (1982). Proving the null hypothesis in clinical trials. Controlled Clinical Trials, 3, 345–353.

    Article  Google Scholar 

  • Brown, B. W., Herson, J., Atkinson, N. E., & Rozell, E. M. (1987). Projection from previous studies: A Bayesian and frequentist compromise. Controlled Clinical Trials, 8, 29–44.

    Article  Google Scholar 

  • Brückner, M. (2016). AHR: Estimation and testing of average hazard ratios. R package version 1.4.2. https://CRAN.R-project.org/package=AHR. Accessed April 9, 2018.

    Google Scholar 

  • Chow, S., Shao, J., & Wang, H. (2008). Sample size calculations in clinical research. Boca Raton: Chapman & Hall.

    MATH  Google Scholar 

  • Cook, R. J., & Lawless, J. F. (2007). The statistical analysis of recurrent events. New York: Springer.

    MATH  Google Scholar 

  • Daimon, T. (2008). Bayesian sample size calculations for a non-inferiority test of two proportions in clinical trials. Contemporary Clinical Trials, 29, 507–516.

    Article  Google Scholar 

  • Dunnett, C. W., & Gent, M. (1977). Significance testing to establish equivalence between treatments, with special reference to data in the form of 2x2 tables. Biometrics, 33, 593–602.

    Article  Google Scholar 

  • Farrington, C. P., & Manning, G. (1990). Test statistics and sample size formulae for comparative binomial trials with null hypothesis of non-zero risk difference or non-unity relative risk. Statistics in Medicine, 9, 1447–1454.

    Article  Google Scholar 

  • Gillett, R. (1994). An average power criterion for sample size estimation. The Statistician, 43, 389–394.

    Article  Google Scholar 

  • Jung, S., Kang, S., McCall, L., & Blumenstein, B. (2005). Sample size computation for two-sample noninferiority log-rank test. Journal of Biopharmaceutical Statistics, 15, 969–979.

    Article  MathSciNet  Google Scholar 

  • Kalbfleisch, J. D., & Prentice, R. L. (1981). Estimation of the average hazard ratio. Biometrika, 68, 105–112.

    Article  MathSciNet  Google Scholar 

  • Prentice, R. L., Williams, B. J., & Peterson, A. V. (1981). On the regression analysis of multivariate failure time data. Biometrika, 68, 373–379.

    Article  MathSciNet  Google Scholar 

  • Rauch, G., Brannath, W., Brückner, M., & Kieser, M. (2017). The average hazard ratio - A good effect measure for time-to-event endpoints when the proportional hazard assumption is violated? Methods of Information in Medicine (accepted).

    Google Scholar 

  • Rauch, G., & Kieser, M. (2013). An expected power approach for the assessment of composite endpoints and their components. Computational Statistics & Data Analysis, 60, 111–122.

    Article  MathSciNet  Google Scholar 

  • Roebruck, P., & Kühn, A. (1995). Comparison of tests and sample size formulae for proving therapeutic equivalence based on the difference of binomial probabilities. Statistics in Medicine, 14, 1583–1594.

    Article  Google Scholar 

  • Royston, P., & Parmar, M. K. B. (2011). The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt. Statistics in Medicine, 30, 2409–2421.

    Article  MathSciNet  Google Scholar 

  • Schemper, M., Wakounig, S., & Heinze, G. (2009). The estimation of average hazard ratios by weighted Cox regression. Statistics in Medicine, 28, 2473–2489.

    Article  MathSciNet  Google Scholar 

  • Schoenfeld, D. (1981). The asymptotic properties of nonparametric tests for comparing survival distributions. Biometrika, 68, 316–319.

    Article  MathSciNet  Google Scholar 

  • Schoenfeld, D. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics, 39, 499–503.

    Article  Google Scholar 

  • Schulgen, G., Olschewski, M., Krane, V., Wanner, C., Ruf, G. & Schumacher, M. (2005). Sample sizes for clinical trials with time-to-event endpoints and competing risks. Contemporary Clinical trials, 26, 386–396.

    Article  Google Scholar 

  • Shao, Y., Mukhi, V., & Goldberg, J. D. (2008). A hybrid Bayesian-frequentist approach to evaluate clinical trial designs for tests of superiority and non-inferiority. Statistics in Medicine, 27, 504–519.

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter, D. J., & Keith, R. A. (2004). Bayesian approaches to clinical trials and health-care evaluation. Chichester: Wiley.

    Google Scholar 

  • Wang Y. C., Meyerson, L., Tang, Y. Q., & Qian, N. (2009). Statistical methods for the analysis of relapse data in MS clinical trials. Journal of the Neurological Sciences, 285, 206–211.

    Article  Google Scholar 

  • Wei, L. J., Lin, D. Y., & Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of the American Statistical Association, 84, 1065–1073.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rauch, G., Schüler, S., Kieser, M. (2017). The Single-Stage Design. In: Planning and Analyzing Clinical Trials with Composite Endpoints. Springer Series in Pharmaceutical Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-73770-6_5

Download citation

Publish with us

Policies and ethics