Skip to main content

Pulmonary Disease and Right Ventricular Function

  • Chapter
  • First Online:
Right Heart Pathology
  • 1834 Accesses

Abstract

Respiratory diseases have become major players in mortality and morbidity charts and their influence on cardiac function has brought them in research focus, especially when investigating their role on the pathobiology of the less well understood right ventricle. By insulting pulmonary vasculature it leads to micro and macrovessel injury which results in pulmonary hypertension, increased right ventricle afterload along with its consequences—right ventricle hypertrophy and dilation. From the initial physical stimuli of hypoxia, translated by the vessel wall cells into a biological response of vasoconstriction and remodeling, pulmonary hypertension develops in a process modulated by the endothelium and many other epigenetic factors. Pulmonary hypertension is rarely severe when associated purely with chronic lung disease but carries a poor prognosis nevertheless, especially when associating right ventricle dysfunction. The primary diagnostic tools remain the echocardiography parameters generally used in all forms of the disorder and invasive procedures are infrequently necessary for evaluation. Unfortunately, this class of pulmonary hypertension shares much of the prognosis and complications with other groups of the, disorder, but less of the therapeutic arsenal which has become more recently available in the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO. The top 10 causes of death. 2017. http://www.who.int/mediacentre/factsheets/fs310/en/ .

  2. Voelkel NF, Gomez-Arroyo J, Abbate A, Bogaard HJ. Mechanisms of right heart failure-A work in progress and a plea for failure prevention. Pulm Circ. 2013;3(1):137–43.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Voelkel NF, Mizuno S, Bogaard HJ. The role of hypoxia in pulmonary vascular diseases: a perspective. AJP. 2013;304(7):L457–65.

    CAS  Google Scholar 

  4. Rigolin VH, Robiolio PA, Wilson JS, Kevin Harrison J, Bashore TM. The forgotten chamber: the importance of the right ventricle. Physiology. 1995;28:18–28.

    Google Scholar 

  5. Baker BJ, Wilen MM, Boyd CM, Dinh H, Franciosa JA. Relation of right ventricular ejection fraction to exercise capacity in chronic left ventricular failure. Am J Cardiol. 1984;54(6):596–9.

    Article  PubMed  CAS  Google Scholar 

  6. de Groote P, et al. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol. 1998;32(4):948–54.

    Article  PubMed  Google Scholar 

  7. Polak JF, Holman BL, Wynne J, Colucci WS. Right ventricular ejection fraction: an indicator of increased mortality in patients with congestive heart failure associated with coronary artery disease. J Am Coll Cardiol. 1983;2(2):217–24.

    Article  PubMed  CAS  Google Scholar 

  8. Di Salvo TG, Mathier M, Semigran MJ, Dec GW. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol. 1995;25(5):1143–53.

    Article  PubMed  Google Scholar 

  9. Melenovsky V, Hwang S-J, Lin G, Redfield MM, Borlaug BA. Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J. 2014;35(48):3452–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Simonneau G, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D34–41.

    Article  PubMed  Google Scholar 

  11. Ho SY. Anatomy, echocardiography, and normal right ventricular dimensions. Heart. 2006;92(suppl_1):i2–13.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dell’Italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin. 2012;30(2):167–87.

    Article  PubMed  Google Scholar 

  13. Voelkel NF, Dietmar S. The right ventricle in health and disease. New York: Springer; 2014.

    Google Scholar 

  14. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.

    Article  PubMed  Google Scholar 

  15. West JB. Role of the fragility of the pulmonary blood-gas barrier in the evolution of the pulmonary circulation. AJP. 2013;304(3):R171–6.

    CAS  Google Scholar 

  16. Berlin DA, Bakker J. Understanding venous return. Intensive Care Med. 2014;40(10):1564–6.

    Article  PubMed  Google Scholar 

  17. Kass DA. Alterations in ventricular function in systolic heart failure - beat-to-beat regulation of systolic function. In: Mann DL, Felker GM, editors. Heart failure: a companion to Braunwald’s heart disease. Philadelphia: Elsevier; 2016.

    Google Scholar 

  18. Harjola V-P, et al. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the working group on pulmonary circulation and right ventricular function of the European Society of Cardiology. Eur J Heart Fail. 2016;18(3):226–41.

    Article  PubMed  Google Scholar 

  19. Wagner PD. Operation everest II. High Alt Med Biol. 2010;11(2):111–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Demiryurek AT, Wadsworth RM, Kane KA, Peacock AJ. The role of endothelium in hypoxic constriction of human pulmonary artery rings. Am Rev Respir Dis. 1993;147(2):283–90.

    Article  PubMed  CAS  Google Scholar 

  21. Ohe M, Ogata M, Katayose D, Takishima T. Hypoxic contraction of pre-stretched human pulmonary artery. Respir Physiol. 1992;87(1):105–14.

    Article  PubMed  CAS  Google Scholar 

  22. Berg JT, Breen EC, Fu Z, Mathieu-Costello O, West JB. Alveolar hypoxia increases gene expression of extracellular matrix proteins and platelet-derived growth factor-B in lung parenchyma. Am J Respir Crit Care Med. 1998;158(6):1920–8.

    Article  PubMed  CAS  Google Scholar 

  23. Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92(1):367–520.

    Article  PubMed  CAS  Google Scholar 

  24. Weissmann N, Grimminger F, Walmrath D, Seeger W. Hypoxic vasoconstriction in buffer-perfused rabbit lungs. Respir Physiol. 1995;100(2):159–69.

    Article  PubMed  CAS  Google Scholar 

  25. Peake MD, Harabin AL, Brennan NJ, Sylvester JT. Steady-state vascular responses to graded hypoxia in isolated lungs of five species. J Appl Physiol Respir Environ Exerc Physiol. 1981;51(5):1214–9.

    PubMed  CAS  Google Scholar 

  26. Lumb AB, Slinger P. Hypoxic pulmonary vasoconstriction physiology and anesthetic implications. Anesthesiology. 2015;122(4):932–46.

    Article  PubMed  CAS  Google Scholar 

  27. Kay JM. Comparative morphologic features of the pulmonary vasculature in mammals 1, 2. Am Rev Respir Dis. 1983;128(2P2):S53–7.

    PubMed  CAS  Google Scholar 

  28. Hong Z, et al. Role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in oxygen sensing and constriction of the ductus arteriosus. Circ Res. 2013;112(5):802–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Longo DL, Archer SL. Mitochondrial dynamics — mitochondrial fission and fusion in human diseases. N Engl J Med. 2013;369(23):2236–51.

    Article  CAS  Google Scholar 

  30. Palmer BF, Clegg DJ. Oxygen sensing and metabolic homeostasis. Mol Cell Endocrinol. 2014;397(1–2):51–8.

    Article  PubMed  CAS  Google Scholar 

  31. Waypa GB, et al. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res. 2002;91(8):719–26.

    Article  PubMed  CAS  Google Scholar 

  32. Waypa GB, Chandel NS, Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res. 2001;88(12):1259–66.

    Article  CAS  PubMed  Google Scholar 

  33. Weir EK, Archer SL. Counterpoint: hypoxic pulmonary vasoconstriction is not mediated by increased production of reactive oxygen species. J Appl Physiol. 2006;101(3):995 LP–998.

    Article  Google Scholar 

  34. Weir EK, López-Barneo J, Buckler KJ, Archer SL. Acute oxygen-sensing mechanisms. N Engl J Med. 2005;353:2042–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Moudgil R, Michelakis ED, Archer SL, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol. 2005;123:390–403.

    Article  CAS  Google Scholar 

  36. Talbot NP, Balanos GM, Dorrington KL, Robbins PA. Two temporal components within the human pulmonary vascular response to ~2 H of isocapnic hypoxia. J Appl Physiol. 2005;98(3):1125–39.

    Article  PubMed  Google Scholar 

  37. Smith TG, et al. The increase in pulmonary arterial pressure caused by hypoxia depends on iron status. J Physiol. 2008;586(24):5999–6005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wang J, Juhaszova M, Rubin LJ, Yuan XJ. Hypoxia inhibits gene expression of voltage-gated K+ channel alpha subunits in pulmonary artery smooth muscle cells. J Clin Investig. 1997;100(9):2347–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Charolidi N, Carroll VA. Hypoxia and pulmonary hypertension. In: Zheng J, editor. Hypoxia and human diseases. Rijeka: InTech; 2017.

    Google Scholar 

  40. Swenson E. Hypoxic pulmonary vasoconstriction and chronic lung disease. Adv Pulm Hypertens. 2013;12(3):135–44.

    Google Scholar 

  41. Weidemann A, Johnson RS. Biology of HIF-1alpha. Cell Death Differ. 2008;15(4):621–7.

    Article  PubMed  CAS  Google Scholar 

  42. Engebretsen BJ, et al. Acute hypobaric hypoxia (5486 M) induces greater pulmonary HIF-1 activation in hilltop compared to Madison rats. High Alt Med Biol. 2007;8(4):312–21.

    Article  PubMed  CAS  Google Scholar 

  43. Beall CM, et al. Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A. 2010;107(25):11459–64.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lorenzo FR, et al. A genetic mechanism for tibetan high-altitude adaptation. Nat Genet. 2014;46(9):951–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sarangi S, et al. The homozygous VHL(D126N) missense mutation is associated with dramatically elevated erythropoietin levels, consequent polycythemia, and early onset severe pulmonary hypertension. Pediatr Blood Cancer. 2014;61(11):2104–6.

    Article  PubMed  CAS  Google Scholar 

  46. Tao H, et al. Expression and significance of hypoxia-inducible factor-1alpha in patients with chronic obstructive pulmonary disease and smokers with normal lung function. Chin J Cell Mol Immunol. 2014;30(8):852–5.

    CAS  Google Scholar 

  47. Daijo H, et al. Cigarette smoke reversibly activates hypoxia-inducible factor 1 in a reactive oxygen species-dependent manner. Sci Rep. 2016;6:34424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension. Circulation. 2004;109(2):159–65.

    Article  PubMed  Google Scholar 

  49. Quy S, Duong. Physiopathology of pulmonary hypertension: from bio-molecular mechanism to target treatment. J Vasc Med Surg. 2016;4(6):294.

    Google Scholar 

  50. Aird WC. Endothelial cell heterogeneity. Crit Care Med. 2003;31(Supplement):S221–30.

    Article  PubMed  Google Scholar 

  51. Tonelli AR, Haserodt S, Aytekin M, Dweik RA. Nitric oxide deficiency in pulmonary hypertension: pathobiology and implications for therapy. Pulm. Circ. 2013;3(1):20–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Aaronson PI, Robertson TP, Ward JPT. Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 2002;132(1):107–20.

    Article  PubMed  CAS  Google Scholar 

  53. Yang Q, et al. NO and EDHF pathways in pulmonary arteries and veins are impaired in COPD patients. Vasc Pharmacol. 2012;57(2–4):113–8.

    Article  CAS  Google Scholar 

  54. Tuder RM, Zaiman AL. Perspective prostacyclin analogs as the brakes for pulmonary artery smooth muscle cell proliferation is it sufficient to treat severe pulmonary hypertension. Am J Respir Cell Mol Biol. 2002;26:171–4.

    Article  PubMed  CAS  Google Scholar 

  55. Tuder RM, et al. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med. 1999;159(6):1925–32.

    Article  PubMed  CAS  Google Scholar 

  56. Christman BW, et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med. 1992;327(2):70–5.

    Article  PubMed  CAS  Google Scholar 

  57. Katugampola SD, Davenport AP. Thromboxane receptor density is increased in human cardiovascular disease with evidence for inhibition at therapeutic concentrations by the AT(1) receptor antagonist losartan. Br J Pharmacol. 2001;134(7):1385–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Langleben D, et al. Effects of the thromboxane synthetase inhibitor and receptor antagonist terbogrel in patients with primary pulmonary hypertension. Am Heart J. 2002;143(5):E4.

    Article  PubMed  Google Scholar 

  59. Frasch HF, Marshall C, Marshall BE. Endothelin-1 is elevated in monocrotaline pulmonary hypertension. Am J Phys. 1999;276(2 Pt 1):L304–10.

    CAS  Google Scholar 

  60. Giaid A, et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med. 1993;328(24):1732–9.

    Article  PubMed  CAS  Google Scholar 

  61. Li H, et al. Enhanced endothelin-1 and endothelin receptor gene expression in chronic hypoxia. J Appl Physiol. 1994;77(3):1451 LP–459.

    Article  Google Scholar 

  62. MacLean MR, Herve P, Eddahibi S, Adnot S. 5-Hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br J Pharmacol. 2000;131(2):161–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Le C, Timothy D, Markham NE, Tuder RM, Voelkel NF, Abman SH. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol. 2002;283(3):L555–62.

    Google Scholar 

  64. Partovian C, et al. Adenovirus-mediated lung vascular endothelial growth factor overexpression protects against hypoxic pulmonary hypertension in rats. Am J Respir Cell Mol Biol. 2000;23(6):762–71.

    Article  PubMed  CAS  Google Scholar 

  65. Ketabchi F, et al. Effects of hypercapnia with and without acidosis on hypoxic pulmonary vasoconstriction. Am J Physiol. 2009;297(5):L977–83.

    CAS  Google Scholar 

  66. Dunham-Snary KJ, et al. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest. 2017;151(1):181–92.

    Article  PubMed  Google Scholar 

  67. Vogelmeier CF, et al. Global strategy for the diagnosis, management and prevention of chronic obstructive lung disease 2017 report. Respirology. 2017;22(3):575–601.

    Article  PubMed  Google Scholar 

  68. Peinado VI, et al. Endothelial dysfunction in pulmonary arteries of patients with mild COPD. Am J Phys. 1998;274(6):908–13.

    Google Scholar 

  69. Green CE, Turner AM. The role of the endothelium in asthma and chronic obstructive pulmonary disease (COPD). Respir Res. 2017;18:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Tuder RM, Voelkel NF. Angiogenesis and pulmonary hypertension: a unique process in a unique disease. Antioxid Redox Signal. 2002;4(5):833–43.

    Article  PubMed  CAS  Google Scholar 

  71. Muller WA. Transendothelial migration: unifying principles from the endothelial perspective. Immunol Rev. 2016;273(1):61–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Liao JK. Linking endothelial dysfunction with endothelial cell activation. J Clin Invest. 2013;123(2):540–1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Oelsner EC, et al. Adhesion molecules, endothelin-1 and lung function in seven population-based cohorts. Biomarkers. 2013;18(3):196–203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Aaron CP, et al. Intercellular adhesion molecule 1 and progression of percent emphysema: the MESA lung study. Respir Med. 2015;109(2):255–64.

    Article  PubMed  Google Scholar 

  75. Riise GC, Larsson S, Lofdahl CG, Andersson BA. Circulating cell adhesion molecules in bronchial lavage and serum in COPD patients with chronic bronchitis. Eur Respir J. 1994;7(9):1673–7.

    Article  PubMed  CAS  Google Scholar 

  76. Janson C, et al. Circulating adhesion molecules in allergic and non-allergic asthma. Respir Med. 2005;99(1):45–51.

    Article  PubMed  Google Scholar 

  77. Mukhopadhyay S, Malik P, Arora SK, Mukherjee TK. Intercellular adhesion molecule-1 as a drug target in asthma and rhinitis. Respirology. 2014;19(4):508–13.

    Article  PubMed  Google Scholar 

  78. Hirata N, et al. Allergen exposure induces the expression of endothelial adhesion molecules in passively sensitized human bronchus: time course and the role of cytokines. Am J Respir Cell Mol Biol. 1998;18(1):12–20.

    Article  PubMed  CAS  Google Scholar 

  79. Malli F, et al. Endothelial progenitor cells in the pathogenesis of idiopathic pulmonary fibrosis: an evolving concept. PLoS ONE. 2013;8(1):e53658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Lu D, Li N, Yao X, Zhou L. Potential inflammatory markers in obstructive sleep apnea-hypopnea syndrome. Bosn J Basic Med Sci. 2017;17(1):47–53.

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Portillo K, Morera J. Combined pulmonary fibrosis and emphysema syndrome: a new phenotype within the spectrum of smoking-related interstitial lung disease. Pulm Med. 2012;2012:867870.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res. 2006;99(7):675–91.

    Article  PubMed  CAS  Google Scholar 

  83. Santos S, et al. Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. Eur Respir J. 2002;19(4):632–8.

    Article  PubMed  CAS  Google Scholar 

  84. Carlsen J, et al. Pulmonary arterial lesions in explanted lungs after transplantation correlate with severity of pulmonary hypertension in chronic obstructive pulmonary disease. J Heart Lung Transplant. 2013;32(3):347–54.

    Article  PubMed  Google Scholar 

  85. Chen H, Strappe P, Chen S, Wang L-X. Endothelial progenitor cells and pulmonary arterial hypertension. Heart Lung Circ. 2014;23(7):595–601.

    Article  PubMed  Google Scholar 

  86. Granton J, et al. Endothelial NO-synthase gene-enhanced progenitor cell therapy for pulmonary arterial hypertension: The PHACeT trial. Circ Res. 2015;117(7):645–54.

    Article  PubMed  CAS  Google Scholar 

  87. Marsboom G, et al. Sustained endothelial progenitor cell dysfunction after chronic hypoxia-induced pulmonary hypertension. Stem Cells. 2008;26(4):1017–26.

    Article  PubMed  Google Scholar 

  88. Hopkins N, McLoughlin P. The structural basis of pulmonary hypertension in chronic lung disease: remodelling, rarefaction or angiogenesis? J Anat. 2002;201(4):335–48.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Feihl F, Liaudet L, Waeber B, Levy BI. Hypertension: a disease of the microcirculation? Hypertension. 2006;48(6):1012–7.

    Article  PubMed  CAS  Google Scholar 

  90. Howell K, Preston RJ, McLoughlin P. Chronic hypoxia causes angiogenesis in addition to remodelling in the adult rat pulmonary circulation. J Physiol. 2003;547(Pt 1):133–45.

    Article  PubMed  CAS  Google Scholar 

  91. Pascaud M-A, et al. Lung overexpression of angiostatin aggravates pulmonary hypertension in chronically hypoxic mice. Am J Respir Cell Mol Biol. 2003;29(4):449–57.

    Article  PubMed  CAS  Google Scholar 

  92. Sajkov D, McEvoy RD. Obstructive sleep apnea and pulmonary hypertension. Prog Cardiovasc Dis. 2009;51(5):363–70.

    Article  PubMed  Google Scholar 

  93. Kholdani C, Fares WH, Mohsenin V. Pulmonary hypertension in obstructive sleep apnea: is it clinically significant? A critical analysis of the association and pathophysiology. Pulmonary Circulation. 2015;5(2):220–7.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shlobin OA, Nathan SD. Pulmonary hypertension secondary to interstitial lung disease. Expert Rev Respir Med. 2011;5(2):179–89.

    Article  PubMed  Google Scholar 

  95. Fagan KA, Badesch DB. Pulmonary hypertension associated with connective tissue disease. Prog Cardiovasc Dis. 2002;45(3):225–34.

    Article  PubMed  Google Scholar 

  96. Authors/Task Force Members, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801.

    Article  Google Scholar 

  97. Wiggins J, Strickland B, Turner-Warwick M. Combined cryptogenic fibrosing alveolitis andemphysema: the value of high resolution computed tomography in assessment. Respir Med. 2017;84(5):365–9.

    Article  Google Scholar 

  98. Cottin V, Nunes H, Brillet P. Combined pulmonary fibrosis and emphysema: a distinct underrecognised entity. Eur Respir J. 2005;26(4):586–93.

    Article  PubMed  CAS  Google Scholar 

  99. Budev MM, Arroliga AC, Wiedemann HP, Matthay RA. Cor pulmonale: an overview. Semin Respir Crit Care Med. 2003;24(3):233–43.

    Article  PubMed  Google Scholar 

  100. World Health Organization. Chronic cor pulmonale: a report of the expert committee. Circulation. 1963;27:594–8.

    Article  Google Scholar 

  101. Weitzenblum E, Chaouat A, Canuet M, Kessler R. Pulmonary hypertension in chronic obstructive pulmonary disease and interstitial lung diseases. Crit Care. 2009;1(212):458–70.

    Google Scholar 

  102. Kolb TM, Hassoun PM. Right ventricular dysfunction in chronic lung disease. Cardiol Clin. 2012;30(2):243–56.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hilde JM, et al. Right ventricular dysfunction and remodeling in chronic obstructive pulmonary disease without pulmonary hypertension. J Am Coll Cardiol. 2013;62(12):1103–11.

    Article  PubMed  Google Scholar 

  104. Watz H, et al. Decreasing cardiac chamber sizes and associated heart dysfunction in COPD: role of hyperinflation. Chest. 2010;138(1):32–8.

    Article  PubMed  Google Scholar 

  105. Zangiabadi A, De Pasquale CG, Sajkov D. Pulmonary hypertension and right heart dysfunction in chronic lung disease. Biomed Res Int. 2014;2014:739674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Bogaard HJ, Abe K, Noordegmaf AV, Voelkel NF. The Right ventricle under pressure. Chest. 2009;135(3):794–804.

    Article  PubMed  CAS  Google Scholar 

  107. Harston RK, Kuppuswamy D. Integrins are the necessary links to hypertrophic growth in cardiomyocytes. J Signal Transduction. 2011;2011:1–8.

    Article  CAS  Google Scholar 

  108. Voelkel NF, et al. Right ventricular function and failure: report of a national heart, lung, and blood institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883–91.

    Article  PubMed  Google Scholar 

  109. Samson N, Paulin R. Epigenetics, inflammation and metabolism in right heart failure associated with pulmonary hypertension. Pulm Circ. 2017;7(3):572–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Scharf SM, et al. Hemodynamic characterization of patients with severe emphysema. Am J Respir Crit Care Med. 2002;166(3):314–22.

    Article  PubMed  Google Scholar 

  111. Chaouat A, et al. Severe pulmonary hypertension and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172(2):189–94.

    Article  PubMed  Google Scholar 

  112. Pugh ME, et al. Causes of pulmonary hypertension in the elderly. Chest. 2014;146(1):159–66.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Klings ES. Pulmonary hypertension due to lung disease and/or hypoxemia (Group 3 pulmonary hypertension): epidemiology, pathogenesis, and diagnostic evaluation in adults. UpToDate. 2017. https://www.uptodate.com/contents/pulmonary-hypertension-due-to-lung-disease-and-or-hypoxemia-group-3-pulmonary-hypertension-epidemiology-pathogenesis-and-diagnostic-evaluation-in-adults?source=see_link#H1538627010.

  114. Arcasoy SM, et al. Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am J Respir Crit Care Med. 2003;167(5):735–40.

    Article  PubMed  Google Scholar 

  115. Javaheri S, Javaheri S, Javaheri A. Sleep apnea, heart failure, and pulmonary hypertension. Curr Heart Fail Rep. 2013;10(4):315–20.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bradley TD, et al. Role of daytime hypoxemia in the pathogenesis of right heart failure in the obstructive sleep apnea syndrome. Am Rev Respir Dis. 1985;131(0003–0805):835–9.

    PubMed  CAS  Google Scholar 

  117. Tzilas V, Bouros D. Combined pulmonary fibrosis and emphysema, a clinical review. COPD Res Pract. 2016;2(1):2.

    Article  Google Scholar 

  118. Sugino K, Ishida F, Kikuchi N. Comparison of clinical characteristics and prognostic factors of combined pulmonary fibrosis and emphysema versus idiopathic pulmonary fibrosis alone. Respirology. 2014;19:239–45.

    Article  PubMed  Google Scholar 

  119. Galiè N, Humbert M, Vachiery JL. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endor. Eur Respir J. 2015;46:903–75.

    Article  PubMed  CAS  Google Scholar 

  120. Seeger W, et al. Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol. 2013;62(25 Suppl):D109–16.

    Article  PubMed  Google Scholar 

  121. Høiseth AD, Omland T, Hagve T-A, Brekke PH, Søyseth V. NT-proBNP independently predicts long term mortality after acute exacerbation of COPD – a prospective cohort study. Respir Res. 2012;13(1):97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Adrish M, Nannaka VB, Cano EJ, Bajantri B, Diaz-Fuentes G. Significance of NT-pro-BNP in acute exacerbation of COPD patients without underlying left ventricular dysfunction. Int J Chron Obstruct Pulmon Dis. 2017;12:1183–9.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ouanes-Besbes L, Hamouda Z, Ouanes I, Dachraoui F, Abroug F. NT-proBNP accurately reflects the impact of severe COPD exacerbation on the right ventricle (RV). Eur Respir J. 2014;42(Suppl 57):P2434.

    Google Scholar 

  124. Leuchte HH, et al. Brain natriuretic peptide is a prognostic parameter in chronic lung disease. Am J Respir Crit Care Med. 2006;173(7):744–50.

    Article  PubMed  CAS  Google Scholar 

  125. Dupont MVM, Drǎgean CA, Coche EE. Right ventricle function assessment by MDCT. Am J Roentgenol. 2011;196(1):77–86.

    Article  Google Scholar 

  126. Gao Y, et al. Evaluation of right ventricular function by 64-row ct in patients with chronic obstructive pulmonary disease and cor pulmonale. Eur J Radiol. 2012;81(2):345–53.

    Article  PubMed  Google Scholar 

  127. Hur J, Kim TH, Kim SJ, Ryu YH, Kim HJ. Assessment of the right ventricular function and mass using cardiac multi-detector computed tomography in patients with chronic obstructive pulmonary disease. Korean J Radiol. 2007;8(1):15–21.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Vitarelli A. Assessment of right ventricular function by strain rate imaging in chronic obstructive pulmonary disease. Eur Respir J. 2006;27(2):268–75.

    Article  PubMed  CAS  Google Scholar 

  129. Turhan S, et al. Value of tissue doppler myocardial velocities of tricuspid lateral annulus for the diagnosis of right heart failure in patients with COPD. Echocardiography. 2007;24(2):126–33.

    Article  PubMed  Google Scholar 

  130. Ozben B, et al. Acute exacerbation impairs right ventricular function in COPD patients. Hell J Cardiol. 2015;56(4):324–31.

    Google Scholar 

  131. Burgess MI, et al. Comparison of echocardiographic markers of right ventricular function in determining prognosis in chronic pulmonary disease. J Am Soc Echocardiogr. 2002;15(6):633–9.

    Article  PubMed  Google Scholar 

  132. Kato S, et al. Prognostic value of cardiovascular magnetic resonance derived right ventricular function in patients with interstitial lung disease. J Cardiovasc Magn Reson. 2015;17(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Vonbank K, et al. Controlled prospective randomised trial on the effects on pulmonary haemodynamics of the ambulatory long term use of nitric oxide and oxygen in patients with severe COPD. Thorax. 2003;58(4):289–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. ClinicalTrials.gov. Inhaled nitric oxide to prevent and treat bronchopulmonary dysplasia (NO-BPD) NCT01503801. 2017. https://clinicaltrials.gov/ct2/show/NCT01503801 .

  135. Warren NJ. Bellerophon to Present Positive Clinical Data on INOpulse® at the American Thoracic Society 113th International Conference. 2017. http://investors.bellerophon.com/phoenix.zhtml?c=253899&p=irol-newsArticle_print&ID=2268250"ID=2268250.

  136. ClinicalTrials.gov. Study in subjects with PAH and PH secondary to IPF using inhaled GeNOsyl. (PHiano) NCT01503801. 2017. https://clinicaltrials.gov/ct2/show/NCT01265888 .

  137. Stolz D, et al. A randomised, controlled trial of Bosentan in severe COPD. Eur Respir J. 2008;32(3):619–28.

    Article  PubMed  CAS  Google Scholar 

  138. Badesch DB, et al. ARIES-3: ambrisentan therapy in a diverse population of patients with pulmonary hypertension. Cardiovasc Ther. 2012;30(2):93–9.

    Article  PubMed  CAS  Google Scholar 

  139. Valerio G, Bracciale P, D’Agostino AG. Effect of Bosentan upon pulmonary hypertension in chronic obstructive pulmonary disease. Ther Adv Respir Dis. 2009;3(1):15–21.

    Article  PubMed  Google Scholar 

  140. Duarte JD, Hanson RL, Machado RF. Pharmacologic treatments for pulmonary hypertension: exploring pharmacogenomics. Futur Cardiol. 2013;9(3):335–49.

    Article  CAS  Google Scholar 

  141. Taichman DB, et al. Pharmacologic therapy for pulmonary arterial hypertension in adults: CHEST guideline and expert panel report. Chest. 2014;146(2):449–75.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Medarov BI, Judson MA. The role of calcium channel blockers for the treatment of pulmonary arterial hypertension: how much do we actually know and how could they be positioned today? Respir Med. 2017;109(5):557–64.

    Article  Google Scholar 

  143. Nice Guidelines. Chronic obstructive pulmonary disease in over 16s: diagnosis and management; 2010. pp. 1–31.

    Google Scholar 

  144. Criner GJ, et al. Effect of lung volume reduction surgery on resting pulmonary hemodynamics in severe emphysema. Am J Respir Crit Care Med. 2007;176(3):253–60.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wise R, Connett J, Weinmann G, Scanlon P, Skeans M. Effect of inhaled triamcinolone on the decline in pulmonary function in chronic obstructive pulmonary disease. N Engl J Med. 2000;343(26):1902–9.

    Article  PubMed  CAS  Google Scholar 

  146. Mapel DW, Dedrick D, Davis K. Trends and cardiovascular co-morbidities of COPD patients in the veterans administration medical system, 1991-1999. COPD. 2005;2(1):35–41.

    Article  PubMed  Google Scholar 

  147. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for diagnosis, management, and prevention of chronic obstructive pulmonary disease (Updated 2014). i-84. 2014.

    Google Scholar 

  148. Aleva FE, et al. Prevalence and localization of pulmonary embolism in unexplained acute exacerbations of COPD: a systematic review and meta-analysis. Chest. 2017;151(3):544–54.

    Article  PubMed  Google Scholar 

  149. Rowan SC, Keane MP, Gaine S, McLoughlin P. Hypoxic pulmonary hypertension in chronic lung diseases: novel vasoconstrictor pathways. Lancet Respir Med. 2016;4(3):225–36.

    Article  PubMed  Google Scholar 

  150. Hurdman J, et al. Pulmonary hypertension in COPD: results from the ASPIRE registry. Eur Respir J. 2013;41(6):1292 LP–1301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weiss, E., Bădilă, E. (2018). Pulmonary Disease and Right Ventricular Function. In: Dumitrescu, S., Ţintoiu, I., Underwood, M. (eds) Right Heart Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-73764-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73764-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73763-8

  • Online ISBN: 978-3-319-73764-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics