Skip to main content

Right Heart in Dilated Cardiomyopathy

  • Chapter
  • First Online:
  • 1808 Accesses

Abstract

Dilated cardiomyopathy (DCM) is a significant burden affecting 5 people in 100,000, it is also the most common cardiomyopathy encountered. The condition can be a result of underlying diseases, which can comprimise the heart's contractility such as any insult to the heart, for example several viral or bacterial infections can lead to myocarditis, whereas other agents such as alcohol or illicit drug use can exert direct cardiotoxic effects destabilizing the normal cardiac function. In many cases, however, no causing effect can be identified and thus, the condition is referred to as, idiopathic non ischemic (dilated) cardiomyopathy. This chapter is dedicated to understand the etiology, pathogenesis, clinical manifestation, diagnosis and treatment of DCM. Although left ventricular dysfunction is seen as the primary outcome of the disease, the right heart function and dysfunction does plays an important role. Physical examination, a complete history and assessment of current symtoms as well as an electrocardiogram, laboratory testing including metabolic panel, brain natriuretic peptide levels and echocardiogram are mainly utilized in the initial diagnostic work-up if cardiomyopathy as a reason for heart failure symptoms is suspected. Due to subtle symptoms of the disease patients oftentimes do not seek medical advice early in the course of the disease but only after severe and debilitating heart failure symptoms occur. Modern therapy is tailored to 1) alleviate symptoms, 2) improve outcomes and reduce mortality and morbidity, and 3) remove or ease the underlying causes in cases of secondary DCM. Whereas vasodilators such as nitrates and diuretics are often the first-line therapy to ease symptoms of shortness of breath and volume overload, early treatment with Angiotensin Converting Enzyme Inhibitors (ACEI) and Angiotensin Receptor Blockers (ARB) is initiated in order to used to prevent cardiac remodeling. Beta blockers have shown promising results to potentially reverse ventricular dilatation and further prevention of structural changes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Towbin JA. Inherited cardiomyopathies. Circ J. 2014;78(10):2347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dadson K, Hauck L, Billia F. Molecular mechanisms in cardiomyopathy. Clin Sci. 2017;131(13):1375–92. https://doi.org/10.1042/CS20160170.

    Article  CAS  Google Scholar 

  3. Mayosi BM, Somers K. Cardiomyopathy in Africa: heredity versus environment. Cardiovasc J Afr. 2007;18(3):175–9.

    PubMed  PubMed Central  Google Scholar 

  4. Ackerman MJ, Banner RN, Christodoulou D, Cirino AL, Conner L, Di Lenarda A, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366:619–28. https://doi.org/10.1056/NEJMoa1110186.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chauveau C, Rowell J, Ferreiro A. A rising titan: TTN review and mutation update. Hum Mutat. 2014;35:1046–59. https://doi.org/10.1002/humu.22611.

    Article  PubMed  CAS  Google Scholar 

  6. Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19(2):192–203. https://doi.org/10.1038/gim.2016.90.

    Article  PubMed  Google Scholar 

  7. Knöll R, Linke WA, Zou P, Miocic S, Kostin S, Buyandelger B, et al. Telethonin deficiency is associated with maladaptation to biomechanical stress in the mammalian heart. Circ Res. 2011;109(7):758–69. https://doi.org/10.1161/CIRCRESAHA.111.245787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev. 2009;89(4):1217–67. https://doi.org/10.1152/physrev.00017.2009.

    Article  PubMed  CAS  Google Scholar 

  9. Muhle-Goll C, Habeck M, Cazorla O, Nilges M, Labeit S, Granzier H. Structural and functional studies of titin’s fn3 modules reveal conserved surface patterns and binding to myosin S1—a possible role in the Frank-Starling mechanism of the heart. J Mol Biol. 2001. https://doi.org/10.1006/jmbi.2001.5017.

  10. Bogomolovas J, Gasch A, Simkovic F, Rigden DJ, Labeit S, Mayans O. Titin kinase is an inactive pseudokinase scaffold that supports MuRF1 recruitment to the sarcomeric M-line. Open Biol. 2014;4(5):140041. https://doi.org/10.1098/rsob.140041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Roberts AM, Ware JS, Herman DS, Schafer S, Baksi J, Bick AG, et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci Transl Med. 2015;7(270):270ra6. https://doi.org/10.1126/scitranslmed.3010134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Abraityte A, Lunde IG, Askevold ET, Michelsen AE, Christensen G, Aukrust P, et al. Wnt5a is associated with right ventricular dysfunction and adverse outcome in dilated cardiomyopathy. Sci Rep. 2017;7:3490. https://doi.org/10.1038/s41598-017-03625-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Burke AP. Arrhythmogenic right ventricular cardiomyopathy pathology. Overview, Etiology Epidemiology. News and Perspective. 2016. https://emedicine.medscape.com/article/2017949-overview. 1 July 2017.

  14. Sanchez-Jimenez EF. Initial clinical presentation of Takotsubo cardiomyopathy with-a focus on electrocardiographic changes: a literature review of cases. World J Cardiol. 2013;5(7):228–41. https://doi.org/10.4330/wjc.v5.i7.228.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fett JD. Peripartum cardiomyopathy: a puzzle closer to solution. World J Cardiol. 2014;6(3):87–99. https://doi.org/10.4330/wjc.v6.i3.87.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ellis ER, Josephson ME. What about tachycardia-induced cardiomyopathy? Arrhythm Electrophysiol Rev. 2013;2(2):82–90. https://doi.org/10.15420/aer.2013.2.2.82.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Krejci J, Mlejnek D, Sochorova D, Nemec P. Inflammatory cardiomyopathy: a current view on the pathophysiology, diagnosis, and treatment. Biomed Res Int. 2016. https://doi.org/10.1155/2016/4087632.

  18. Kuhl U, Pauschinger M, Noutsias M, Seeberg B, Bock T, Lassner D, Poller W, Kandolf R, Schultheiss HP. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with idiopathic left ventricular dysfunction. Circulation. 2005;111(7):887–93. https://doi.org/10.1161/01.CIR.0000155616.07901.35.

    Article  PubMed  Google Scholar 

  19. N'Guyen Y, Lesaffre F, Metz D, Tassan S, Saade Y, Boulagnon C, Fornes P, Renois F, Andreoletti L. Enterovirus but not Parvovirus B19 is associated with idiopathic dilated cardiomyopathy and endomyocardial CD3, CD68, or HLA-DR expression. J Med Virol. 2017;89:55–63. https://doi.org/10.1002/jmv.24600.

    Article  PubMed  CAS  Google Scholar 

  20. Caforio ALP, Bottaro S, Iliceto S. Dilated cardiomyopathy (DCM) and myocarditis: classification, clinical and autoimmune features. Appl Cardiopulm Pathophysiol. 2012;16:82–95. http://www.applied-cardiopulmonary-pathophysiology.com/fileadmin/downloads/acp-2012-1_20120301/06_caforio.pdf.

    Google Scholar 

  21. Kransdorf EP, Fishbein MC, Czer LS, Patel JK, Velleca A, et al. Pathology of chronic chagas cardiomyopathy in the United States: a detailed review of 13 Cardiectomy cases. Am J Clin Pathol. 2016;146:191–8. https://doi.org/10.1093/AJCP/AQ098.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang M, Tavora F, Huebner T, Heath J, Burke A. Allograft pathology in patients transplanted for idiopathic dilated cardiomyopathy. Am J Surg Pathol. 2012;36(3):389–95. https://doi.org/10.1097/PAS.0b013e31823b02f5.

    Article  PubMed  Google Scholar 

  23. Sisakian H. Cardiomyopathies: evolution of pathogenesis concepts and potential for new therapies. World J Cardiol. 2014;6(6):478–94. https://doi.org/10.4330/wjc.v6.i6.478.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kadish A, Rubenstein JC. Connecting the dots: the relevance of scar in non-ischemic cardiomyopathy. J Am Coll Cardiol. 2009;53(13):1146–7. https://doi.org/10.1016/j.jacc.2008.12.027.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Agabegi ED, Agabegi SS. Chap. 1: diseases of the cardiovascular system/section: valvular heart disease. In: Step-up to medicine, Step-up series. Philadelphia: Lippincott Williams & Wilkins; 2008. isbn:0-7817-7153-6.

    Google Scholar 

  26. Rivero-Carvallo JM. Signo para el diagnostico de las insuficiencias tricuspideas. Arch Inst Cardiol Mex. 1946;16:531.

    PubMed  CAS  Google Scholar 

  27. Japp AG, Gulati A, Cook SA, Cowie MR, Prasad SK. The diagnosis and evaluation of DCM. J Am Coll Cardiol. 2016;67(25):2996–3010. https://doi.org/10.1016/j.jacc.2016.03.590.

    Article  PubMed  Google Scholar 

  28. Mathew T, Williams L, Navaratnam G, Rana B, Wheeler R, Collins K, British Society of Echocardiography Education Committee, et al. Diagnosis and assessment of dilated cardiomyopathy: a guideline protocol from the British Society of Echocardiography. Echo Res Pract. 2017;4(2):G1–G13. https://doi.org/10.1530/ERP-16-0037.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bozkurt B, Colvine M, Cook J, Cooper LT, Deswal A, Fonorow GC, Francis GS, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies. Circulation. 2016;2016(134):e579–646. https://doi.org/10.1161/CIR.0000000000000455.

    Article  Google Scholar 

  30. Reis Filho JR d AR, Cardoso JN, Cardoso CM d R, Pereira-Barretto AC. Reverse cardiac remodeling: a marker of better prognosis in heart failure. Arq Bras Cardiol. 2015;104(6):502–6. https://doi.org/10.5935/abc.20150025.

    Article  PubMed  Google Scholar 

  31. Wong M, Staszewsky L, Latini R, Barlera S, Glazer R, Aknay N, Hester A, Anand I, Cohn JN. Severity of left ventricular remodeling defines outcomes and response to therapy in heart failure Val-HeFT echocardiographic data. J Am Coll Cardiol. 2004;43(11):2022–7. https://doi.org/10.1016/j.jacc.2003.12.053.

    Article  PubMed  Google Scholar 

  32. Konstam MA, Patten RD, Thomas I, Ramahi T, La Bresh K, Goldman S, Lewis W, et al. Effects of losartan and captopril on left ventricular volumes in elderly patients with heart failure: results of the ELITE ventricular function sub study. Am Heart J. 2000;139(6):1081–7. https://doi.org/10.1067/mhj.2000.105302.

    Article  PubMed  CAS  Google Scholar 

  33. Hoshikawa E, Matsumura Y, Kubo T, Okawa M, Yamasaki N, et al. Effect of left ventricular reverse remodeling on long-term prognosis after therapy with angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and betablockers in patients with idiopathic dilated cardiomyopathy. Am J Cardiol. 2011;107(7):1065–70.

    Article  CAS  PubMed  Google Scholar 

  34. Khattar RS. Effects of ACEI and beta blockers on left ventricular remodeling in chronic heart failure. Minerva Cardioangiol. 2003;51(2):143–54. https://doi.org/10.1016/j.amjcard.2010.11.033.

    Article  PubMed  CAS  Google Scholar 

  35. Siddiqi OK, Ruberg FL. Cardiac amyloidosis: an update on pathophysiology, diagnosis and treatment. Trends Cardiovasc Med. 2017. https://doi.org/10.1016/j.tcm.2017.07.004.

  36. Papadakis MA, Mcphee SJ, Rabow MW. Current medical diagnosis and treatment 2017. 56th ed. New York: McGraw Hill Education; 2017.

    Google Scholar 

  37. Lund LH, Edwards LB, Kuvheryevaya AY, et al. The registery of the international society for heart and lung transplantation: 30th official adult heart transplant report 2013. J Heart Lung Transplant. 2013;32(10):951–64.

    Article  PubMed  Google Scholar 

  38. Jawitz OK. Outcomes following heart transplantation in a national cohort: an analysis of the organ procurement and transplantation network’s database. Yale University-EliScholar. 2016.

    Google Scholar 

  39. Fitchett DH, Sugrue DD, MacArthur CG, Oakley CM. Right ventricular dilated cardiomyopathy. Br Heart J. 1984;51(1):25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, A., Merie, S., Morvey, D., Saylan, Y., von Schwarz, E.R. (2018). Right Heart in Dilated Cardiomyopathy. In: Dumitrescu, S., Ţintoiu, I., Underwood, M. (eds) Right Heart Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-73764-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73764-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73763-8

  • Online ISBN: 978-3-319-73764-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics