Skip to main content

Mechanics of Metamaterials: An Overview of Recent Developments

  • Chapter
  • First Online:
Advances in Mechanics of Microstructured Media and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 87))

Abstract

The emergence of additive manufacturing in combination with the advancement of engineering analysis tools has led to a new paradigm in the design of materials, in which the organization of matter and topology plays a central role. A new class of artificial materials has emerged that exhibit static and dynamic properties typically not encountered in natural materials and have been named as metamaterials. In the current work, we present recent advances made in the field, relating to both the static attributes and to the wave propagation characteristics of metamaterials under small and large strains. In particular, we present a class of anti-auxetic inner material architectures with positive and high Poissons ratio values which lead to metamaterials of controlled anisotropy. Thereupon, we study the influence of the degree of anisotropy on the wave propagation characteristics under small strains. Moreover, we analyze the effect of geometrical nonlinearities on the propagation of longitudinal and shear waves in two-dimensional hexagonal-shaped architectured lattices viewed as effective 1D and 2D media, while we showcase the potential of non-auxetic architectures to reach auxetic ones through a kinematic control in the large strains regime. What is more, we analyze the role of the considered nonlinearity in the nature of propagating waves, identifying strain thresholds beyond which both supersonic and subsonic modes emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui, T.J., Smith, D.R., Liu, R.P.: Metamaterials: Theory Design and Applications. Springer (2010)

    Google Scholar 

  2. Smith, D.R., Pendry, J.B.: Homogenization of metamaterials by field averaging. J. Optic. Soc. Am. B 23(3), 391 (2006)

    Article  Google Scholar 

  3. Engheta, N., Ziolkowski, R.W.: Metamaterials: Physics and Engineering Explorations (2006)

    Google Scholar 

  4. Greaves, G.N.: Poisson’s ratio over two centuries: challenging hypotheses. Notes Rec. R. Soc. London 67(2012), 37–58 (2013)

    Google Scholar 

  5. Liu, Y., Hu, H.: A review on auxetic structures and polymeric materials. Sci. Res. Essays 5(10), 1052–1063 (2010)

    Google Scholar 

  6. Spadoni, A., Ruzzene, M.: Elasto-static micropolar behavior of a chiral auxetic lattice. J. Mech. Phys. Solids 60(1), 156–171 (2012)

    Article  Google Scholar 

  7. Bacigalupo, A., Gambarotta, L.: Homogenization of periodic hexa- and tetrachiral cellular solids. Compos. Struct. 116(1), 461–476 (2014)

    Article  Google Scholar 

  8. Prawoto, Y.: Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 58, 140–153 (2012)

    Google Scholar 

  9. Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T.: Poisson’s ratio and modern materials. Nat. Mater. 10, 823–838 (Oct. 2011)

    Google Scholar 

  10. Lachenal, X., Daynes, S., Weaver, P.M.: Review of morphing concepts and materials for wind turbine blade applications. Wind Energy 16(2012), 283–307 (2013)

    Google Scholar 

  11. Kingnid, R.O., Farhan, G.: Zero poissons ratio cellular honeycombs for ex skins undergoing onedimensional morphing. J. Intelligen. Mater. Syst. Struct. 21(17), 1737–1753 (2010)

    Article  Google Scholar 

  12. Attard, D., Grima, J.N.: Modelling of hexagonal honeycombs exhibiting zero Poisson’s ratio. physica status solidi (b) 248(1), 52–59 (2011)

    Google Scholar 

  13. Gong, X., Huang, J., Scarpa, F., Liu, Y., Leng, J.: Zero Poisson ’s ratio cellular structure for two-dimensional morphing applications. Compos. Struct. 134, 384–392 (2015)

    Article  Google Scholar 

  14. Karathanasopoulos, N., Reda, H., Ganghoffer, J.-F.: Designing two-dimensional metamaterials of controlled static and dynamic properties. Comput. Mater. Sci. 138, 323–332 (2017)

    Article  Google Scholar 

  15. Zheng, X., Lee, H., Weisgraber, T.H., Shuste, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X., Spadaccini, C.M.: Ultralight, ultrastiff mechanical metamaterials. Science 344(6190), 1373–1377 (2014)

    Article  Google Scholar 

  16. Babaee, S., Shim, J., Weaver, J.C., Chen, E.R., Patel, N., Bertoldi, K.: 3D soft metamaterials with negative Poisson’s ratio. Adv. Mat. 25(36), 5044–5049 (2013)

    Google Scholar 

  17. Jiang, Y., Wang, Q.: Highly-stretchable 3D-architected mechanical metamaterials, Nature (2016)

    Google Scholar 

  18. Karathanasopoulos, N., Angelikopoulos, P., Papadimitriou, C., Koumoutsakos, P.: Bayesian identication of the tendon fascicles structural composition using finite element models for helical geometries. Comput. Methods Appl. Mech. Eng. 313, 744–758 (2017)

    Article  Google Scholar 

  19. Abdolhamid, M.-P., Ahmad, O., Ali, M.: Tendon Tissue Engineering and its role on healing of the experimentally induced large tendon defect model in rabbits: a comprehensive in vivo study. PLoS One, 8(9) (2013)

    Google Scholar 

  20. Engheta, N., Ziolkowski, R.W.: Metamaterials: Physics and Engineering Explorations, Wiley (2006)

    Google Scholar 

  21. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, 51–73 (2003)

    Google Scholar 

  22. Forest, S., Sievert, R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Forest, S.: Micromorphic Approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)

    Google Scholar 

  24. Buechner, P.M., Lakes, R.S.: Size effects in the elasticity and viscoelasticity of bone. Biomechan. Model. Mechanobiol. 1, 295–301 (2003)

    Article  Google Scholar 

  25. Manktelow, K., Leamy, M.J., Ruzzene, M.: Topology design and optimization of nonlinear periodic materials. J. Mech. Phys. Solids 61(12), 2433–2453 (2013a)

    Google Scholar 

  26. Manktelow, K., Leamy, M.J., Ruzzene, M.: Comparison of asymptotic and transfer matrix approaches for evaluating intensity-dependent dispersion in nonlinear photonic and phononic crystals. Wave Motion 50, 494–508 (2013b)

    Google Scholar 

  27. Narisetti, R.K., Ruzzene, M., Leamy, M.J.: Study of Wave Propagation in Strongly Nonlinear Periodic Lattices Using a Harmonic Balance Approach. Wave Motion 49, 394–410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids (2013). https://doi.org/10.1177/1081286512474016

  29. Eremeyev, V.A., Pietraszkiewicz, W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lee, S.H., Park, C.M., Seo, Y.M., Wang, Z.G., Kim, C.K.: Composite acoustic medium with simultaneously negative density and modulus. Phys. Rev. Lett. 104(5), (2010)

    Google Scholar 

  31. Kolpakovs, A.G.: Determination of the average characteristics of elastic frameworks. J. Appl. Math. Mech. 49(6), 739–745 (1985)

    Article  MathSciNet  Google Scholar 

  32. Xu, B., Arias, F., Brittain, S.T., Zhao, X.-M., Grzybowski, B., Torquato, S., Whitesides, G.M.: Making negative Poissons ratio microstructures by soft lithography. Advanc. Mater. 11(14), 1186–1189 (1999)

    Article  Google Scholar 

  33. Christensen, J., de Abajo, F.: Anisotropic metamaterials for full control of acoustic waves. Phys. Rev. Lett. 108(12), (2012)

    Google Scholar 

  34. Del Vescovo, D., Fregolent, A.: Theoretical and experimental dynamic analysis aimed at the improvement of an acoustic method for fresco detachment diagnosis. Mech. Syst. Signal Process. 23(7), 2312–2319 (2009)

    Article  Google Scholar 

  35. Phani, A.S., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119(4), 1995–2005 (2006)

    Article  Google Scholar 

  36. Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Wave propagation in 3D viscoelastic auxetic and textile materials by homogenized continuum micropolar models. Comp. Struct. 141, 328–345 (2016)

    Article  Google Scholar 

  37. Gonella, S., Ruzzene, M.: Homogenization and equivalent in-plane properties of two-dimensional periodic lattices. Int. J. Solids Struct. 45(10), 2897–2915 (2008)

    Article  MATH  Google Scholar 

  38. Bacigalupo, A., Gambarotta, L.: Homogenization of periodic hexa- and tetrachiral cellular solids. Comp. Struct. 116, 461–476 (2014)

    Article  Google Scholar 

  39. Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Wave propagation analysis in 2D nonlinear hexagonal periodic networks based on second order gradient nonlinear constitutive models. Int. J. Nonlin. Mech. 87, 85–96 (2016)

    Article  Google Scholar 

  40. Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Nonlinear dynamical analysis of 3D textiles based on second order gradient homogenized media. Comp. Struct. 154, 538–555 (2016)

    Article  Google Scholar 

  41. Manktelow, K., Narisetti, R.K., Leamy, M.J., Ruzzene, M.: Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures. J. Mech. Syst. Signal Proc. 39, 32–46 (2013)

    Article  Google Scholar 

  42. Danescu, A.: Bifurcation in the traction problem for a transversely isotropic material. Math. Proc. Cambridge Philos. Soc. 110, 385–394 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dorfmann, A., Ogden, R.W.: A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41, 1855–1878 (2004)

    Article  MATH  Google Scholar 

  44. Kurashige, K.: Instability of a transversely isotropic elastic slab subjected to axial. Appl. Mech. 48, 351–356 (1981)

    Article  MATH  Google Scholar 

  45. El Nady, K., Ganghoffer, J.F.: Computation of the effective mechanical response of biological networks accounting for large configuration changes. J. Mech. Behav. Biomed. Mat. 58, 28–44 (2015)

    Article  Google Scholar 

  46. Dos Reis, F., Ganghoffer, J.F.: Construction of micropolar models from lattice homogenization. Comput. Struct. 112–113 (2012) 354–363

    Google Scholar 

  47. El Nady, K., Goda, I., Ganghoffer, J.F.: Computation of the effective nonlinear mechanical response of lattice materials considering geometrical nonlinearities. Comp. Mech. 58 (2016) 1–23

    Google Scholar 

  48. Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola, F.: Homogenization la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    Google Scholar 

  49. Andrianov, I.V., Danishevs’kyy, V.V., Ryzhkov, O.I., Weichert, D.: Numerical study of formation of solitary strain waves in a nonlinear elastic layered composite material. Wave Motion 51, 405–417 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Ganghoffer .

Editor information

Editors and Affiliations

Appendix

Appendix

The effective densities of the diamond and octagon-shaped lattice architectures (\(D,\,\,DS,\,\,O,\,\,OS\)) are given in parametric form with respect to their slenderness \(\eta =t/L,\,\,c=\cos \theta ,\,\,s=\sin \theta \) (Fig. 2) and the constituents material density \({{\rho }_{s}}\), as follows:

$$\begin{aligned} \begin{array}{lll} \rho _{D}^{*}&{}=&{}\frac{{{\rho }_{s}}\,\eta }{cs}, \quad \rho _{DS}^{*}=\frac{{{\rho }_{s}}(1+s)\,\eta }{cs} \\ \rho _{O}^{*}&{}=&{}\frac{6{{\rho }_{s}}\,\eta }{\,(2c+1)\,(2s+1)}, \quad \rho _{OS}^{*}=\frac{{{\rho }_{s}}\,\eta \,(6+2\,(1+2s))}{(2c+1)\,(2s+1)} \end{array} \end{aligned}$$
(18)

The effective mechanical moduli \(E_{1}^{*}\) and \(E_{2}^{*}\) for the diamond-shaped lattice metamaterials without (D) and with (DS) inner strengthenings are given in Eq. 19. The moduli are normalized with respect to the modulus \({{E}_{s}}\) of the constitutive material and are provided in closed-form as functions of the aspect ratio \(\eta \) and angle \(\theta \) of the lattice’s unit cell. We note that in [14], the corresponding expressions of the effective moduli have been additively normalized with respect to the unit-cell density values.

$$\begin{aligned} \begin{array}{lll} E{{_{1}^{*}}^{D}}&{}=&{}-\frac{{{\eta }^{3}}c}{s\left( {{c}^{2}}-{{\eta }^{2}}{{c}^{2}}-1 \right) }, \quad E{{_{2}^{*}}^{D}}=\frac{{{\eta }^{3}}s}{c\left( {{c}^{2}}-{{\eta }^{2}}{{c}^{2}}+{{\eta }^{2}} \right) }\\ E{{_{1}^{*}}^{DS}}&{}=&{}\frac{\eta \left( s-s{{\eta }^{2}}-1 \right) c}{{{c}^{2}}s\left( 1-{{\eta }^{2}} \right) +\left( s-1 \right) \left( {{c}^{2}}+{{\eta }^{2}} \right) -2s+1}\\ E{{_{2}^{*}}^{DS}}&{}=&{}\frac{\eta \left( {{c}^{2}}+\left( {{c}^{2}}-1 \right) \left( {{\eta }^{4}}-2{{\eta }^{2}} \right) c \right) }{{{c}^{4}}\left( 1-2{{\eta }^{2}} \right) +{{\eta }^{4}}\left( {{c}^{4}}+{{c}^{2}}s-2{{c}^{2}}-s+1 \right) +{{c}^{2}}{{\eta }^{2}}\left( 2-s \right) } \end{array} \end{aligned}$$
(19)

The effective moduli for the octagon-shaped lattice metamaterials without (O) and with (OS) inner strengthenings are given accordingly in Eq. 20, as follows:

$$\begin{aligned} \begin{array}{lll} E{{_{1}^{*}}^{O}}&{}=&{}-\frac{1}{2}\frac{{{\eta }^{3}}\left( 2c+1 \right) }{\left( \left( 1-{{\eta }^{2}} \right) {{c}^{2}}-1-{{\eta }^{2}} \right) \left( s+0.5 \right) },\,\,\,\,\,E{{_{2}^{*}}^{O}}=\frac{{{\eta }^{3}}\left( 2s+1 \right) }{\left( {{c}^{2}}-{{\eta }^{2}}{{c}^{2}}+2{{\eta }^{2}} \right) \left( 2c+1 \right) } \\ E{{_{1}^{*}}^{OS}}&{}=&{}\frac{1}{4}\frac{\eta \left( 2{{c}^{2}}-2{{\eta }^{2}}{{c}^{2}}+2{{\eta }^{2}}s+s{{\eta }^{2}} \right) \left( 2c+1 \right) }{\left( 1-{{\eta }^{2}} \right) \left( {{c}^{4}}-s{{c}^{2}} \right) +\left( -\frac{9}{4}+\frac{1}{4}{{\eta }^{2}} \right) {{c}^{2}}+3\left( 1+{{\eta }^{2}} \right) \left( s+\frac{3}{4} \right) }\\ E{{_{2}^{*}}^{OS}}&{}=&{}\frac{\eta \left( 2{{c}^{2}}-2{{\eta }^{2}}{{c}^{2}}+2{{\eta }^{2}}s+s{{\eta }^{2}} \right) }{\left( {{c}^{2}}-{{\eta }^{2}}{{c}^{2}}+2{{\eta }^{2}} \right) \left( 2c+1 \right) } \end{array} \end{aligned}$$
(20)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reda, H., Karathanasopoulos, N., Elnady, K., Ganghoffer, J.F., Lakiss, H. (2018). Mechanics of Metamaterials: An Overview of Recent Developments. In: dell'Isola, F., Eremeyev, V., Porubov, A. (eds) Advances in Mechanics of Microstructured Media and Structures. Advanced Structured Materials, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-73694-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73694-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73693-8

  • Online ISBN: 978-3-319-73694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics