Skip to main content

Model of Media with Conserved Dislocation. Special Cases: Cosserat Model, Aero-Kuvshinskii Media Model, Porous Media  Model

  • Chapter
  • First Online:
Advances in Mechanics of Microstructured Media and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 87))

Abstract

A sequential presentation of the theory of media by conserved dislocations as a variant of the theory of media with a microstructure (according to Mindlin’s definition) is given as well as a rather complete description of the particular variants of the theory, relevant from an applied point of view: Cosserat and Aero–Kuvshinskii media, porous media, media with “twinning”. The correctness of the formulation of models is determined by the use of a “kinematic” variational principle based on a formal description of the kinematics of media, the formulation of kinematic constraints for media of different complexity, and the construction of the corresponding potential energy of deformation using the Lagrange multiplier procedure. A system of defining relations is established and an agreed formulation of the boundary value problem is formulated. In this paper, much attention is paid to the analysis of the physical side of models of the media studied. The interpretation of all physical characteristics responsible for nonclassical effects is proposed, and a description of the spectrum of adhesive mechanical parameters is given. The generalized Aero-Kuvshinskii hypothesis about the proportionality of free and constrained distortions is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dislocations in Solids, 1st edn. In: Hirth, J. (eds.) A tribute to F.R.N. Nabarro, vol. 14, p. 650 (2008)

    Google Scholar 

  2. Maugin, G.A.: Material forces: concepts and applications. Appl. Mech. Rev. 48, 213–245 (1995)

    Article  Google Scholar 

  3. Likhachev, V.A., Volkov, A.E., Shudegov, V.E.: Continuum theory of defects. Leningrad State Univ. Publ. 228, Leningrad (in Russian) (1986)

    Google Scholar 

  4. Nabarro, F.R.N.: Theory of Crystal Dislocations. Oxford University Press, Oxford (1967)

    Google Scholar 

  5. Gutkin, M.Y.: Elastic behavior of defects in nanomatarials. I model for infinite and semi-infinite media. Rev. Adv. Mater. Sci. 13, 125–161 (2006)

    Google Scholar 

  6. Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  MATH  Google Scholar 

  8. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  MATH  Google Scholar 

  9. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 1, 51–78 (1964)

    MathSciNet  MATH  Google Scholar 

  10. Mindlin, R.D., Tiersten, H.F.: Effects of the couple-stress in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  Google Scholar 

  11. Kroner, E.: Dislocations and continuum mechanics. Appl. Mech. Rev. 15, 599–606 (1962)

    Google Scholar 

  12. Kroner, E.: Gauge field theories of defects in solids. Stuttgart Max-Plank Inst. (1982)

    Google Scholar 

  13. De Wit, R.: Theory of dislocations: continuous and discrete disclinations in isotropic elasticity. J. Res. Nat. Bur. Stand. 77A(3), 359–368 (1973)

    Google Scholar 

  14. De Wit, R.: The continual theory of the stationary dislocations. Solid State Phys. 10, 249 (1960)

    Google Scholar 

  15. Aifantis, E.C.: Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)

    Article  Google Scholar 

  16. Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 1239–1263 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Aero, E.L., Kuvshinskii, E.V.: Fundamental equations of elasticity theory for the media with a rotational interaction of particles. Fiz. Tverd. Tela 2, 1399–1409 (1960)

    Google Scholar 

  18. Lurie, S.A., Belov, P.A., Tuchkova, N.P.: Gradient theory of media with conserved dislocations: application to microstructured materials. In: Maugin, G.A., Metrikine, A.V. (eds.) One hundred years after the Cosserats, advances in mechanics and mathematics, vol. 21, pp. 223–234. Springer, Heidelberg (2010)

    Google Scholar 

  19. Belov, P.A., Lurie, S.A.: Mathematical theory of directness media. Gradient Theories, Formulations, Hierarchy. Analysis. Applications, p. 337. Palmarium Academic Publishing (2014)

    Google Scholar 

  20. Lurie, S.A., Belov, P.A., Volkov-Bogorodsky, D.B., Tuchkova, N.P.: Interphase layer theory and application in the mechanics of composite materials. J. Mat. Sci. 41(20), 6693–6707 (2006)

    Article  Google Scholar 

  21. Belov, P.A., Lurie, S.A.: A continuum model of microheterogeneous media. J. Appl. Math. Mech. 73(5), 599–608 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lurie, S., Belov, P., Altenbach, H.: Classification of gradient adhesion theories across length scale. Generalized Continua as Models for Classical and Advanced Materials Series, vol. 42, pp. 261–277 (2016)

    Google Scholar 

  23. Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49(12), 1294–1301 (2011)

    Article  MathSciNet  Google Scholar 

  24. Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cosserat, E., Cosserat, F.: Theore des corps deformables. Hermann, Paris (1909)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported particular by the Russian Foundation for Basic Research project No. 15-01-03649 and 16-01-00623, 17-01-00837.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lurie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lurie, S.A., Belov, P.A., Rabinskiy, L.N. (2018). Model of Media with Conserved Dislocation. Special Cases: Cosserat Model, Aero-Kuvshinskii Media Model, Porous Media  Model. In: dell'Isola, F., Eremeyev, V., Porubov, A. (eds) Advances in Mechanics of Microstructured Media and Structures. Advanced Structured Materials, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-73694-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73694-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73693-8

  • Online ISBN: 978-3-319-73694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics