Skip to main content

Some Introductory and Historical Remarks on Mechanics of Microstructured Materials

  • Chapter
  • First Online:
Advances in Mechanics of Microstructured Media and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 87))

Abstract

Here we present few remarks on the development of the models of microstuctured media and the generalized continua.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auffray, N., dell’Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertram, A., Glüge, R.: Gradient materials with internal constraints. Math. Mech. Complex Syst. 4(1), 1–15 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Camar-Eddine, M., Seppecher, P.: Determination of the closure of the set of elasticity functionals. Arch. Ration. Mech. Anal. 170(3), 211–245 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of gabrio piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eringen, A.C., Kafadar, C.B.: Polar field theories. In: Eringen, A.C. (ed.) Continuum Physics. vol. IV, pp. 1–75. Academic Press, New York (1976)

    Google Scholar 

  6. Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus. première partie: théorie du second gradient. J. Mécanique 12, 236–274 (1973)

    Google Scholar 

  7. Germain, P.: The method of virtual power in continuum mechanics. part 2: microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973)

    Google Scholar 

  8. dell’Isola, F., Corte, A.D., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eugster, S.R., dell’Isola, F.: Exegesis of Sect. II and III. A from fundamentals of the mechanics of continua by Hellinger, E. ZAMM (2017). https://doi.org/10.1002/zamm.201600293

  10. Eugster, S.R., dell’Isola, F. (2017) Exegesis of Sect. III. A from fundamentals of the mechanics of continua by E. Hellinger. ZAMM

    Google Scholar 

  11. Eugster, S.R., dell’Isola, F.: Exegesis of the Introduction and Sect. I from fundamentals of the mechanics of continua by Hellinger, E. ZAMM 97(4), 477–506 (2017)

    Google Scholar 

  12. Maugin, G.A.: Generalized continuum mechanics: what do we mean by that? In: A MG, V MA (eds) Mechanics of Generalized Continua. One Hundred Years after the Cosserats, Springer, pp. 3–13 (2010)

    Google Scholar 

  13. Maugin, G.A.: A historical perspective of generalized continuum mechanics. In: Altenbach, H., Erofeev, V.I., Maugin, G.A. (eds.) Mechanics of Generalized Continua, pp. 3–19. From the Micromechanical Basics to Engineering Applications, Springer, Berlin (2011)

    Chapter  Google Scholar 

  14. Maugin, G.A.: Generalized Continuum Mechanics: Various Paths, pp. 223–241. Springer, Dordrecht (2013)

    Google Scholar 

  15. Maugin, G.A.: Continuum mechanics through ages. From the Renaissance to the twentieth century, Springer, Cham (2016)

    MATH  Google Scholar 

  16. Maugin, G.A.: Non-Classical Continuum Mechanics: A Dictionary. Springer, Singapore (2017)

    Book  MATH  Google Scholar 

  17. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  18. dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift für angewandte Mathematik und Physik 63(6), 1119–1141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. dell’Isola, F., Della Corte, A., Esposito, R., Russo, L.: Some cases of unrecognized transmission of scientific knowledge: from antiquity to gabrio piolas peridynamics and generalized continuum theories. In: Generalized continua as models for classical and advanced materials, Springer, pp 77–128 (2016)

    Google Scholar 

  20. Kline, M.: Mathematical Thought From Ancient to Modern Times: Voll. 1,2,3, vol. 3. OUP USA (1990)

    Google Scholar 

  21. Kuhn, T.S.: The Structure of Scientific Revolutions, 3rd edn. University of Chicago Press (1996)

    Google Scholar 

  22. Sedov, L.I.: Mathematical methods for constructing new models of continuous media. Russian Math. Surv. 20(5), 123 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stillwell, J.: Exceptional objects. Am. Math. Month. 105(9), 850–858 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  25. Turro, N.J.: Paradigms lost and paradigms found: Examples of science extraordinary and science pathological and how to tell the difference. Angewandte Chemie International Edition 39(13), 2255–2259 (2000)

    Article  Google Scholar 

  26. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Herman et Fils, Paris (1909)

    MATH  Google Scholar 

  27. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  29. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Article  MATH  Google Scholar 

  30. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon-Press, Oxford (1986)

    MATH  Google Scholar 

  32. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  33. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Heidelberg (2013)

    Google Scholar 

  34. Eringen, A.C.: Microcontinuum Field Theory. I. Foundations and Solids, Springer, New York (1999)

    Book  MATH  Google Scholar 

  35. dell’Isola, F., Andreaus, U., Cazzani, A., Perego, U., Placidi, L., Ruta, G., Scerrato, D.: Di un principio controverso della meccanica analitica di lagrange e delle molteplici sue applicazioni. In: The complete works of Gabrio Piola: vol. 1 I, Springer, pp 371–590 (2014)

    Google Scholar 

  36. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic analysis for periodic structures, vol. 5. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  37. Bakhvalov, N.S., Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials, Mathematical Problems in the Mechanics of Composite Materials, vol. 36. Kluwer, Dordrecht (1989)

    MATH  Google Scholar 

  38. Braides, A.: Gamma-convergence for Beginners, vol. 22. Clarendon Press (2002)

    Google Scholar 

  39. Braides, A.: A handbook of \(\gamma \)-convergence. North-Holland, Handbook of Differential Equations: Stationary Partial Differential Equations 3, 101–213 (2006)

    MATH  Google Scholar 

  40. Braides, A., Defranceschi, A.: Homogenization of Multiple Integrals, vol. 12. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  41. Braides, A., Truskinovsky, L.: Asymptotic expansions by \(\gamma \)-convergence. Continuum Mech. Thermodynam. 20(1), 21–62 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dal Maso, G.: An introduction to \(\Gamma \)-convergence, Progress in Nonlinear Differential Equations and Their Applications, vol. 8. Birkhauser, Basel (1993)

    Google Scholar 

  43. Hornung, U. (ed.): Homogenization and porous media, Interdisciplinary Applied Mathematics, vol. 6. Springer, New York (2012)

    Google Scholar 

  44. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  45. Kozlov, S.M.: Averaging of random operators. Matematicheskii. Sbornik 151(2), 188–202 (1979)

    Google Scholar 

  46. Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83(290), 2583–2603 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical problems in elasticity and homogenization, Studies in Mathematics and its Applications, vol. 26. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

  48. Ostoja-Starzewski, M.: Microstructural randomness and scaling in mechanics of materials. Chapman and Hall/CRC Press, Boca Raton (2007)

    Book  MATH  Google Scholar 

  49. Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Berlin (2000)

    Google Scholar 

  50. Alibert, J.J., Della Corte, A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Zeitschrift für angewandte Mathematik und Physik 66(5), 2855–2870 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Berlyand, L., Owhadi, H.: Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast. Arch. Ration. Mech. Anal. 198(2), 677–721 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Camar-Eddine, M., Seppecher, P.: Non-local interactions resulting from the homogenization of a linear diffusive medium. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 332(5), 485–490 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Camar-Eddine, M., Seppecher, P.: Closure of the set of diffusion functionals with respect to the mosco-convergence. Math. Models Methods Appl. Sci. 12(08), 1153–1176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. Carcaterra, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogenous systems: A mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218(3), 1239–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. Challamel, N., Kocsis, A., Wang, C.: Higher-order gradient elasticity models applied to geometrically nonlinear discrete systems. Theor. Appl. Mech. 42(4), 223–248 (2015)

    Article  MATH  Google Scholar 

  57. Cordero, N.M., Forest, S., Busso, E.P.: Second strain gradient elasticity of nano-objects. J. Mech. Phys. Solids 97, 92–124 (2016)

    Article  MathSciNet  Google Scholar 

  58. Javili, A., McBride, A., Mergheim, J., Steinmann, P., Schmidt, U.: Micro-to-macro transitions for continua with surface structure at the microscale. Int. J. Solids Struct. 50(16), 2561–2572 (2013)

    Article  Google Scholar 

  59. Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mech. Thermodynam. 9(5), 241–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  61. Trinh, D.K., Janicke, R., Auffray, N., Diebels, S., Forest, S.: Evaluation of generalized continuum substitution models for heterogeneous materials. Int. J. Multiscale Computat. Eng. 10(6) (2012)

    Google Scholar 

  62. Naumenko, K., Eremeyev, V.A.: A layer-wise theory for laminated glass and photovoltaic panels. Comp. Struct. 112, 283–291 (2014)

    Article  Google Scholar 

  63. Naumenko, K., Eremeyev, V.A.: A layer-wise theory of shallow shells with thin soft core for laminated glass and photovoltaic applications. Comp. Struct. 178, 434–446 (2017)

    Article  Google Scholar 

  64. Besdo, D.: Towards a Cosserat-theory describing motion of an originally rectangular structure of blocks. Arch. Appl. Mech. 80(1), 25–45 (2010)

    Article  MATH  Google Scholar 

  65. Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. Trans. ASME J. Appl. Mech. 74(4), 741–753 (2007)

    Article  MathSciNet  Google Scholar 

  66. Dos Reis, F., Ganghoffer, J.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112, 354–363 (2012)

    Article  Google Scholar 

  67. Ehlers, W., Ramm, E., Diebels, S., d’Addetta, G.D.A.: From particle ensembles to Cosserat continua: Homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40(24), 6681–6702 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  68. Goda, I., Ganghoffer, J.F.: Identification of couple-stress moduli of vertebral trabecular bone based on the 3d internal architectures. J. Mech. Behav. Biomed. Mater. 51, 99–118 (2015)

    Article  Google Scholar 

  69. Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16, 87–108 (2012)

    Article  Google Scholar 

  70. Larsson, R., Diebels, S.: A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. Int. J. Numer. Methods Eng. 69(12), 2485–2512 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  71. Reda, H., Rahali, Y., Ganghoffer, J., Lakiss, H.: Wave propagation in 3D viscoelastic auxetic and textile materials by homogenized continuum micropolar models. Comp. Struct. 141, 328–345 (2016)

    Article  Google Scholar 

  72. Trovalusci, P., De Bellis, M.L., Ostoja-Starzewski, M., Murrali, A.: Particulate random composites homogenized as micropolar materials. Meccanica 49(11), 2719–2727 (2014)

    Article  MathSciNet  Google Scholar 

  73. Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M.L., Murrali, A.: Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech. A/Solids 49, 396–407 (2015)

    Article  Google Scholar 

  74. Trovalusci, P., De Bellis, M.L., Masiani, R.: A multiscale description of particle composites: From lattice microstructures to micropolar continua. Comp. Part B Eng. 128, 164–173 (2017)

    Article  Google Scholar 

  75. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  76. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Sol. Struct. 14(6), 431–440 (1978)

    Article  MATH  Google Scholar 

  77. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. Royal Soc. A 453(1959), 853–877 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  78. Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. Royal Soc. A 455(1982), 437–474 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  79. Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  80. Esposito, R., Pulvirenti, M.: From particles to fluids. Handbook of mathematical fluid dynamics 3, 1–82 (2004)

    MathSciNet  MATH  Google Scholar 

  81. Pulvirenti, M.: Kinetic limits for stochastic particle systems. Lecture Notes in Mathematics pp. 96–126 (1996)

    Google Scholar 

  82. Saint-Raymond, L.: Hydrodynamic limits of the Boltzmann equation. 1971, Springer (2009)

    Google Scholar 

  83. Caprino, S., Esposito, R., Marra, R., Pulvirenti, M.: Hydrodynamic limits of the Vlasov equation. Commun. Partial Differ. Equat. 18(5–6), 805–820 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  84. Carinci, G., De Masi, A., Giardinà, C., Presutti, E.: Hydrodynamic limit in a particle system with topological interactions. Arab. J. Math. 3(4), 381–417 (2014)

    Google Scholar 

  85. Carinci, G., De Masi, A., Giardinà, C., Presutti, E.: Super-hydrodynamic limit in interacting particle systems. J. Stat. Phys. 155(5), 867–887 (2014)

    Google Scholar 

  86. De Masi, A., Olla, S.: Quasi-static hydrodynamic limits. J. Stat. Phys. 161(5), 1037–1058 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  87. De Masi, A., Merola, I., Presutti, E., Vignaud, Y.: Coexistence of ordered and disordered phases in Potts models in the continuum. J. Stat. Phys. 134(2), 243–306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  88. De Masi, A., Luckhaus, S., Presutti, E.: Two scales hydrodynamic limit for a model of malignant tumor cells. Annales de l’Institut Henri Poincare (B) Probability and Statistics 43(3):257–297 (2007)

    Google Scholar 

  89. De Masi, A., Galves, A., Löcherbach, E., Presutti, E.: Hydrodynamic limit for interacting neurons. J. Stat. Phys. 158(4), 866–902 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  90. Papanicolaou, G.C., Varadhan, S.S.: Boundary value problems with rapidly oscillating random coefficients. Seria Colloq Math Society Janos Bolyai 1, 835–873 (1979)

    Google Scholar 

  91. Nadler, B., Papadopoulos, P., Steigmann, D.J.: Multiscale constitutive modeling and numerical simulation of fabric material. Int. J. Solids Struct. 43(2), 206–221 (2006)

    Article  MATH  Google Scholar 

  92. Steigmann, D.J.: Two-dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity. Int. J. Eng. Sci. 46(7), 654–676 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  93. Steigmann, D.J., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mechanica Sinica 31(3), 373–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  94. Giorgio, I.: Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Zeitschrift für angewandte Mathematik und Physik 67(4), 95 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  95. Saeb S, Steinmann P, Javili A (2016) Aspects of computational homogenization at finite deformations: A unifying review from reuss’ to voigt’s bound. Appl. Mech. Rev. 68(5):050,801

    Google Scholar 

  96. Bevill, G., Eswaran, S.K., Gupta, A., Papadopoulos, P., Keaveny, T.M.: Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone 39(6), 1218–1225 (2006)

    Article  Google Scholar 

  97. Ganghoffer, J.F.: Spatial and material stress tensors in continuum mechanics of growing solid bodies. Math. Mech. Comp. Syst. 3(4), 341–363 (2016)

    Article  MATH  Google Scholar 

  98. Berdichevsky, V.: Variational Principles of Continuum Mechanics: I. Fundamentals, Springer, Heidelberg (2009)

    MATH  Google Scholar 

  99. Hamilton, W.R.: On a general method in dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function. Philos. Trans. Royal Soc. London 124, 247–308 (1834)

    Article  Google Scholar 

  100. Stigler, S.M.: Stigler’s law of eponymy. Transactions of the New York Academy of Sciences 39 (1 Series II):147–157 (1980)

    Google Scholar 

  101. Benvenuto, E.: La scienza delle costruzioni e il suo sviluppo storico. Sansoni, Firenze (1981)

    Google Scholar 

  102. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenisation, experimental and numerical examples of equilibrium. Proc. Royal Soc. London Ser A 472(2185): 20150, 790 (2016)

    Google Scholar 

  103. Turco, E., Rizzi, N.L.: Pantographic structures presenting statistically distributed defects: numerical investigations of the effects on deformation fields. Mech. Res. Commun. 77, 65–69 (2016)

    Article  Google Scholar 

  104. Turco, E., Barcz, K., Pawlikowski, M., Rizzi, N.L.: Non-standard coupled extensional and bending bias tests for planar pantographic lattices. part i: numerical simulations. Zeitschrift für angewandte Mathematik und Physik 67(5), 122 (2016)

    Google Scholar 

  105. Turco, E., Barcz, K., Pawlikowski, M., Rizzi, N.L.: Non-standard coupled extensional and bending bias tests for planar pantographic lattices. part i: numerical simulations. Zeitschrift für angewandte Mathematik und Physik 67(5), 122 (2016)

    Google Scholar 

  106. Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: Numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)

    Google Scholar 

  107. Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)

    Google Scholar 

  108. Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: Experiments and their numerical simulations. Comp. Part B Eng. 118, 1–14 (2017)

    Article  Google Scholar 

  109. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford, International series of monographs on physics (1954)

    MATH  Google Scholar 

  110. Ostoja-Starzewski, M.: Lattice models in micromechanics. Appl. Mech. Rev. 55(1), 35–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  111. Porubov, A.: Modeling of strongly nonlinear effects in diatomic lattices. Arch. Appl. Mech. 84(9–11), 1533–1538 (2014)

    Article  MATH  Google Scholar 

  112. Porubov, A., Andrianov, I.: Nonlinear waves in diatomic crystals. Wave Motion 50(7), 1153–1160 (2013)

    Article  MathSciNet  Google Scholar 

  113. Porubov, A., Antonov, I., Fradkov, A., Andrievsky, B.: Control of localized non-linear strain waves in complex crystalline lattices. Int. J. Non-Lin. Mech. 86, 174–184 (2016)

    Article  Google Scholar 

  114. Porubov, A.V., Aero, E.L., Maugin, G.A.: Two approaches to study essentially nonlinear and dispersive properties of the internal structure of materials. Phys. Rev. E 79(4):046,608 (2009)

    Google Scholar 

  115. Russo, L.: The forgotten revolution: how science was born in 300 BC and why it had to be reborn. Springer Science & Business Media (2013)

    Google Scholar 

  116. Piola, D.G.: Sulla teorica dei cannocchiali. Memoria inserita nelle Effemeridi. Dall’Imp, Regia Stamperia, Milano (1821)

    Google Scholar 

  117. Piola, D.G.: Veglie di un filosofo. In: Soliani, E. (ed.) Memorie di religione, di morale e di letteratura. Tipografi Reale, Modena (1823)

    Google Scholar 

  118. dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: (eds) The complete works of Gabrio Piola: vol. I. Springer (2014)

    Google Scholar 

  119. Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  120. Gatouillat, S., Bareggi, A., Vidal-Sallé, E., Boisse, P.: Meso modelling for composite preform shaping-simulation of the loss of cohesion of the woven fibre network. Comp. Part A Appl. Sci. Manufact. 54, 135–144 (2013)

    Article  Google Scholar 

  121. Harrison, P.: Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh. Comp. Part A Appl. Sci. Manufact. 81, 145–157 (2016)

    Article  Google Scholar 

  122. Harrison, P., Alvarez, M.F., Anderson, D.: Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics. Int. J. Solids Struct. (2017)

    Google Scholar 

  123. Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2d models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik 67(5), 121 (2016)

    Google Scholar 

  124. Abali, B.E., Müller, W.H., Georgievskii, D.V.: A discrete-mechanical approach for computation of three-dimensional flows. ZAMM 93(12), 868–881 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  125. Battista, A., Cardillo, C., Del Vescovo, D., Rizzi, N.L., Turco, E.: Frequency shifts induced by large deformations in planar pantographic continua. Nanomech. Sci.Technol. Int. J. 6(2), (2015)

    Google Scholar 

  126. Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  127. Lejeune, E., Javili, A., Linder, C.: An algorithmic approach to multi-layer wrinkling. Extreme Mech. Lett. 7, 10–17 (2016)

    Article  Google Scholar 

  128. Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a 2d fabric sheet with inextensible fibres. Zeitschrift für angewandte Mathematik und Physik 67(5), 114 (2016)

    Google Scholar 

  129. Pideri C, Seppecher P (2006) Asymptotics of a non-planar rod in non-linear elasticity. Asymp. Anal. 48(1, 2):33–54

    Google Scholar 

  130. Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift für angewandte Mathematik und Physik 66(6), 3699–3725 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  131. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)

    Article  MathSciNet  Google Scholar 

  132. Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-d continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM J. Appl. Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 94(12), 978–1000 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  133. Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325–1343 (2016)

    Article  Google Scholar 

  134. Giorgio, I., Andreaus, U., Lekszycki, T., Corte, A.D.: The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math. Mech. Solids 22(5), 969–987 (2017)

    Google Scholar 

  135. Giorgio, I., Andreaus, U., Scerrato, D., Braidotti, P.: Modeling of a non-local stimulus for bone remodeling process under cyclic load: Application to a dental implant using a bioresorbable porous material. Math. Mech. Solids 22(9), 1790–1805 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Eremeyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

dell’Isola, F., Eremeyev, V.A. (2018). Some Introductory and Historical Remarks on Mechanics of Microstructured Materials. In: dell'Isola, F., Eremeyev, V., Porubov, A. (eds) Advances in Mechanics of Microstructured Media and Structures. Advanced Structured Materials, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-73694-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73694-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73693-8

  • Online ISBN: 978-3-319-73694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics