Advertisement

Assessment of Fluid Overload in Critically Ill Patients: Role of Bioelectrical Impedance Analysis

  • M. L. N. G. Malbrain
  • E. De Waele
  • P. M. Honoré
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)

Introduction

The association of a positive fluid balance and increased morbidity and mortality has been well documented [1, 2, 3, 4, 5]. However, little is known about the best method to assess fluid status and fluid overload. Fluid overload is defined by a cut-off value of 10% fluid accumulation above baseline body weight [5, 6, 7]. The human body consists of around 60% of water, 18% protein, 16% fat and 6% minerals [8]. Intracellular water (ICW) counts for two‐thirds of total body water (TBW) while one‐third is extracellular water (ECW). ECW contains 75% interstitial fluid and 25% intravascular fluid. Thus, the plasma accounts for only 5.5% of TBW. In critically ill patients, fluid overload results mainly from excessive fluid administration. After 1 h, infusion of 1 l of isotonic fluid (e.g., so‐called normal saline) will increase the intravascular volume by 250 ml and the interstitial fluid volume by 750 ml. On the other hand, infusion of 1 l of hypotonic fluid...

References

  1. 1.
    Vincent JL, Sakr Y, Sprung CL et al (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–353CrossRefGoogle Scholar
  2. 2.
    Murphy CV, Schramm GE, Doherty JA et al (2009) The importance of fluid management in acute lung injury secondary to septic shock. Chest 136:102–109CrossRefGoogle Scholar
  3. 3.
    Acheampong A, Vincent JL (2015) A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care 19:251CrossRefGoogle Scholar
  4. 4.
    Silversides JA, Major E, Ferguson AJ et al (2017) Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med 43:155–170CrossRefGoogle Scholar
  5. 5.
    Malbrain ML, Marik PE, Witters I et al (2014) Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther 46:361–380CrossRefGoogle Scholar
  6. 6.
    Claure-Del Granado R, Mehta RL (2016) Fluid overload in the ICU: evaluation and management. BMC Nephrol 17:109CrossRefGoogle Scholar
  7. 7.
    Vaara ST, Korhonen AM, Kaukonen KM et al (2012) Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care 16:R197CrossRefGoogle Scholar
  8. 8.
    Malbrain MLNG, Huygh J, Dabrowski W, De Waele J, Wauters J (2014) The use of bio-electrical impedance analysis (BIA) to guide fluid management, resuscitation and deresuscitation in critically ill patients: a bench-to-bedside review. Anaesthesiol Intensive Ther 46:381–391CrossRefGoogle Scholar
  9. 9.
    National Institute of Health (1994) Bioelectrical Impedance Analysis in Body Composition Measurement. NIH Technol Assess Statement Dec 12–14:1–35Google Scholar
  10. 10.
    Wabel P, Chamney P, Moissl U, Jirka T (2009) Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purif 27:75–80CrossRefGoogle Scholar
  11. 11.
    Plank LD, Hill GL (2000) Similarity of changes in body composition in intensive care patients following severe sepsis or major blunt injury. Ann N Y Acad Sci 904:592–602CrossRefGoogle Scholar
  12. 12.
    Savalle M, Gillaizeau F, Maruani G et al (2012) Assessment of body cell mass at bedside in critically ill patients. Am J Physiol Endocrinol Metab 303:E389–E396CrossRefGoogle Scholar
  13. 13.
    Streat SJ, Beddoe AH, Hill GL (1985) Measurement of total body water in intensive care patients with fluid overload. Metabolism 34:688–694CrossRefGoogle Scholar
  14. 14.
    Macedo E, Bouchard J, Soroko SH et al (2010) Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care 14:R82CrossRefGoogle Scholar
  15. 15.
    Hoste EA, Maitland K, Brudney CS et al (2014) Four phases of intravenous fluid therapy: a conceptual model. Br J Anaesth 113:740–747CrossRefGoogle Scholar
  16. 16.
    Marik PE, Monnet X, Teboul JL (2011) Hemodynamic parameters to guide fluid therapy. Ann Intensive Care 1:1CrossRefGoogle Scholar
  17. 17.
    Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377CrossRefGoogle Scholar
  18. 18.
    Marik PE (2014) Iatrogenic salt water drowning and the hazards of a high central venous pressure. Ann Intensive Care 4:21CrossRefGoogle Scholar
  19. 19.
    Cordemans C, De Laet I, Van Regenmortel N et al (2012) Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak and fluid balance. Ann Intensive Care 2(Suppl 1):S1CrossRefGoogle Scholar
  20. 20.
    Cordemans C, De Laet I, Van Regenmortel N et al (2012) Aiming for a negative fluid balance in patients with acute lung injury and increased intra-abdominal pressure: a pilot study looking at the effects of PAL-treatment. Ann Intensive Care 2(Suppl 1):S15CrossRefGoogle Scholar
  21. 21.
    Powell-Tuck J, Gosling P, Lobo D et al (2009) Summary of the British consensus guidelines on intravenous fluid therapy for adult surgical patients (GIFTASUP). J Intensive Care Soc 10:13–15CrossRefGoogle Scholar
  22. 22.
    Soni N (2009) British consensus guidelines on intravenous fluid therapy for adult surgical patients (GIFTASUP): cassandra’s view. Anaesthesia 64:235–238CrossRefGoogle Scholar
  23. 23.
    Cecconi M, Fasano N, Langiano N et al (2011) Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care 15:R132CrossRefGoogle Scholar
  24. 24.
    Kirkpatrick AW, Roberts DJ, De Waele J et al (2013) Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med 39:1190–1206CrossRefGoogle Scholar
  25. 25.
    Verbrugge FH, Dupont M, Steels P et al (2013) Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol 62:485–495CrossRefGoogle Scholar
  26. 26.
    Freitag E, Edgecombe G, Baldwin I, Cottier B, Heland M (2010) Determination of body weight and height measurement for critically ill patients admitted to the intensive care unit: A quality improvement project. Aust Crit Care 23:197–207CrossRefGoogle Scholar
  27. 27.
    Schneider AG, Baldwin I, Freitag E, Glassford N, Bellomo R (2012) Estimation of fluid status changes in critically ill patients: fluid balance chart or electronic bed weight? J Crit Care 27(745):e747–e712Google Scholar
  28. 28.
    Saugel B, Ringmaier S, Holzapfel K et al (2011) Physical examination, central venous pressure, and chest radiography for the prediction of transpulmonary thermodilution-derived hemodynamic parameters in critically ill patients: a prospective trial. J Crit Care 26:402–410CrossRefGoogle Scholar
  29. 29.
    Perel A, Saugel B, Teboul JL et al (2015) The effects of advanced monitoring on hemodynamic management in critically ill patients: a pre and post questionnaire study. J Clin Monit Comput 30:511–518CrossRefGoogle Scholar
  30. 30.
    Vlachou E, Gosling P, Moiemen NS (2006) Microalbuminuria: a marker of endothelial dysfunction in thermal injury. Burns 32:1009–1016CrossRefGoogle Scholar
  31. 31.
    Lichtenstein D, Malbrain ML (2015) Critical care ultrasound in cardiac arrest. Technological requirements for performing the SESAME-protocol – a holistic approach. Anaesthesiol Intensive Ther 47:471–481PubMedGoogle Scholar
  32. 32.
    Vermeiren GL, Malbrain ML, Walpot JM (2015) Cardiac Ultrasonography in the critical care setting: a practical approach to asses cardiac function and preload for the “non-cardiologist”. Anaesthesiol Intensive Ther 47:89–104CrossRefGoogle Scholar
  33. 33.
    Agricola E, Bove T, Oppizzi M et al (2005) “Ultrasound comet-tail images”: a marker of pulmonary edema: a comparative study with wedge pressure and extravascular lung water. Chest 127:1690–1695CrossRefGoogle Scholar
  34. 34.
    Vandervelden S, Malbrain ML (2015) Initial resuscitation from severe sepsis: one size does not fit all. Anaesthesiol Intensive Ther 47:44–55CrossRefGoogle Scholar
  35. 35.
    Hofkens PJ, Verrijcken A, Merveille K et al (2015) Common pitfalls and tips and tricks to get the most out of your transpulmonary thermodilution device: results of a survey and state-of-the-art review. Anaesthesiol Intensive Ther 47:89–116CrossRefGoogle Scholar
  36. 36.
    Foster KR, Lukaski HC (1996) Whole-body impedance – what does it measure? Am J Clin Nutr 64(3 Suppl):388S–396SCrossRefGoogle Scholar
  37. 37.
    Streat SJ, Plank LD, Hill GL (2000) Overview of modern management of patients with critical injury and severe sepsis. World J Surg 24:655–663CrossRefGoogle Scholar
  38. 38.
    Vandervelden S, Teering S, Hoffman B et al (2015) Prognostic value of bioelectrical impedance analysis (BIA) derived parameters in critically ill patients. Anaesth Intensive Ther 47(Suppl 2):14–16Google Scholar
  39. 39.
    Tattersall J (2009) Bioimpedance analysis in dialysis: state of the art and what we can expect. Blood Purif 27:70–74CrossRefGoogle Scholar
  40. 40.
    Kyle UG, Bosaeus I, De Lorenzo AD et al (2004) Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr 23:1430–1453CrossRefGoogle Scholar
  41. 41.
    Piccoli A, Codognotto M, Cianci V et al (2012) Differentiation of cardiac and noncardiac dyspnea using bioelectrical impedance vector analysis (BIVA). J Card Fail 18:226–232CrossRefGoogle Scholar
  42. 42.
    Basso F, Berdin G, Virzi GM et al (2013) Fluid management in the intensive care unit: bioelectrical impedance vector analysis as a tool to assess hydration status and optimal fluid balance in critically ill patients. Blood Purif 36:192–199CrossRefGoogle Scholar
  43. 43.
    Samoni S, Vigo V, Resendiz LI et al (2016) Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording. Crit Care 20:95CrossRefGoogle Scholar
  44. 44.
    Padhi S, Bullock I, Li L et al (2013) Intravenous fluid therapy for adults in hospital: summary of NICE guidance. BMJ 347:f7073CrossRefGoogle Scholar
  45. 45.
    Joannes-Boyau O, Honore PM, Perez P et al (2013) High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med 39:1535–1546CrossRefGoogle Scholar
  46. 46.
    Lameire N, Kellum JA, Group KAGW (2013) Contrast-induced acute kidney injury and renal support for acute kidney injury: a KDIGO summary (Part 2). Crit Care 17:205CrossRefGoogle Scholar
  47. 47.
    Dabrowski W, Kotlinska-Hasiec E, Schneditz D et al (2014) Continuous veno-venous hemofiltration to adjust fluid volume excess in septic shock patients reduces intra-abdominal pressure. Clin Nephrol 82:41–50PubMedGoogle Scholar
  48. 48.
    Paterna S, Di Gaudio F, La Rocca V et al (2015) Hypertonic saline in conjunction with high-dose furosemide improves dose-response curves in worsening refractory congestive heart failure. Adv Ther 32:971–982CrossRefGoogle Scholar
  49. 49.
    Luecke T, Roth H, Herrmann P et al (2003) PEEP decreases atelectasis and extravascular lung water but not lung tissue volume in surfactant-washout lung injury. Intensive Care Med 29:2026–2033CrossRefGoogle Scholar
  50. 50.
    Martin GS, Moss M, Wheeler AP et al (2005) A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med 33:1681–1687CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • M. L. N. G. Malbrain
    • 1
    • 2
  • E. De Waele
    • 1
  • P. M. Honoré
    • 1
  1. 1.Dept of Intensive CareUniversity Hospital BrusselsBrusselsBelgium
  2. 2.Intensive Care Unit and High Care Burn UnitZiekenhuis Netwerk Antwerpen, ZNA StuivenbergAntwerpBelgium

Personalised recommendations