Regulation of Cardiac Output and Manipulation with Fluids

  • H. D. Aya
  • M. Cecconi
  • M. I. Monge GarcíaEmail author
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)


The normal acute physiological response to critical illness is to increase oxygen consumption (VO2) and oxygen delivery (DO2) by increasing cardiac output to meet the augmented metabolic demands. In that situation, normal values are inadequate. This concept is the basis of hemodynamic optimization, also called early goal‐directed therapy (EGDT), which consists of a sequence of therapeutic interventions on the cardiovascular system using hemodynamic monitoring and well‐defined interventions to increase DO2. This approach has been shown to improve tissue oxygenation, prevent postoperative complications and decrease mortality in high‐risk patients undergoing major surgery [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. This concept was extrapolated to patients with septic shock in a clinical trial published by Rivers and colleagues [13]. However, three multicenter clinical trials [14, 15, 16] showed no benefit of this intervention in this population of critically ill patients....


  1. 1.
    Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30:1686–1692CrossRefGoogle Scholar
  2. 2.
    Poeze M, Greve JW, Ramsay G (2005) Meta-analysis of hemodynamic optimization: relationship to methodological quality. Crit Care 9:R771–R779CrossRefGoogle Scholar
  3. 3.
    Giglio MT, Marucci M, Testini M, Brienza N (2009) Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth 103:637–646CrossRefGoogle Scholar
  4. 4.
    Brienza N, Giglio MT, Marucci M, Fiore T (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37:2079–2090CrossRefGoogle Scholar
  5. 5.
    Rahbari NN, Zimmermann JB, Schmidt T, Koch M, Weigand MA, Weitz J (2009) Meta-analysis of standard, restrictive and supplemental fluid administration in colorectal surgery. Br J Surg 96:331–341CrossRefGoogle Scholar
  6. 6.
    Dalfino L, Giglio MT, Puntillo F, Marucci M, Brienza N (2011) Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Crit Care 15:R154CrossRefGoogle Scholar
  7. 7.
    Gurgel ST, do Nascimento P Jr (2011) Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg 112:1384–1391CrossRefGoogle Scholar
  8. 8.
    Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112:1392–1402CrossRefGoogle Scholar
  9. 9.
    Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM (2012) Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg 114:640–651CrossRefGoogle Scholar
  10. 10.
    Aya HD, Cecconi M, Hamilton M, Rhodes A (2013) Goal-directed therapy in cardiac surgery: a systematic review and meta-analysis. Br J Anaesth 110:510–517CrossRefGoogle Scholar
  11. 11.
    Arulkumaran N, Corredor C, Hamilton MA et al (2014) Cardiac complications associated with goal-directed therapy in high-risk surgical patients: a meta-analysis. Br J Anaesth 112:648–659CrossRefGoogle Scholar
  12. 12.
    Cecconi M, Corredor C, Arulkumaran N et al (2013) Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care 17:209CrossRefGoogle Scholar
  13. 13.
    Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377CrossRefGoogle Scholar
  14. 14.
    Peake SL, Delaney A, Bailey M et al (2014) Goal-directed resuscitation for patients with early septic shock. N Engl J Med 371:1496–1506CrossRefGoogle Scholar
  15. 15.
    Yealy DM, Kellum JA, Huang DT et al (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370:1683–1693CrossRefGoogle Scholar
  16. 16.
    Mouncey PR, Osborn TM, Power GS et al (2015) Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 372:1301–1311CrossRefGoogle Scholar
  17. 17.
    Starling EH, Visscher MB (1927) The regulation of the energy output of the heart. J Physiol 62:243–261CrossRefGoogle Scholar
  18. 18.
    Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130:423–429CrossRefGoogle Scholar
  19. 19.
    Rosenberg AL, Dechert RE, Park PK, Bartlett RH, NIH NHLBI ARDS Network (2009) Review of a large clinical series: association of cumulative fluid balance on outcome in acute lung injury: a retrospective review of the ARDSnet tidal volume study cohort. J Intensive Care Med 24:35–46CrossRefGoogle Scholar
  20. 20.
    Wiedemann HP, Wheeler AP, Bernard GR et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575CrossRefGoogle Scholar
  21. 21.
    Bellomo R, Cass A, Cole L et al (2012) An observational study fluid balance and patient outcomes in the Randomized Evaluation of Normal vs. Augmented Level of Replacement Therapy trial. Crit Care Med 40:1753–1760CrossRefGoogle Scholar
  22. 22.
    Bouchard J, Soroko SB, Chertow GM et al (2009) Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 76:422–427CrossRefGoogle Scholar
  23. 23.
    Grams ME, Estrella MM, Coresh J et al (2011) Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol 6:966–973CrossRefGoogle Scholar
  24. 24.
    Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA (2011) Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 39:259–265CrossRefGoogle Scholar
  25. 25.
    Mikkelsen ME, Christie JD, Lanken PN et al (2012) The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med 185:1307–1315CrossRefGoogle Scholar
  26. 26.
    Finfer S, Bellomo R, Boyce N et al (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256CrossRefGoogle Scholar
  27. 27.
    Hjortrup PB, Haase N, Bundgaard H et al (2016) Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med 42:1695–1705CrossRefGoogle Scholar
  28. 28.
    Malbrain ML, Marik PE, Witters I et al (2014) Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther 46:361–380CrossRefGoogle Scholar
  29. 29.
    Aya HD, Rhodes A, Ster IC, Fletcher N, Grounds RM, Cecconi M (2017) Hemodynamic effect of different doses of fluids for a fluid challenge: a quasi-randomized controlled study. Crit Care Med 45:e161–e168CrossRefGoogle Scholar
  30. 30.
    Cecconi M, Aya HD, Geisen M et al (2013) Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med 39:1299–1305CrossRefGoogle Scholar
  31. 31.
    Monge Garcia MI, Guijo Gonzalez P, Gracia Romero M et al (2015) Effects of fluid administration on arterial load in septic shock patients. Intensive Care Med 41:1247–1255CrossRefGoogle Scholar
  32. 32.
    Aya HD, Ster IC, Fletcher N, Grounds RM, Rhodes A, Cecconi M (2016) Pharmacodynamic analysis of a fluid challenge. Crit Care Med 44:880–891CrossRefGoogle Scholar
  33. 33.
    Biais M, de Courson H, Lanchon R et al (2017) Mini-fluid challenge of 100 ml of crystalloid predicts fluid responsiveness in the operating room. Anesthesiology 127:450–456CrossRefGoogle Scholar
  34. 34.
    Mallat J, Meddour M, Durville E et al (2015) Decrease in pulse pressure and stroke volume variations after mini-fluid challenge accurately predicts fluid responsiveness. Br J Anaesth 115:449–456CrossRefGoogle Scholar
  35. 35.
    Muller L, Toumi M, Bousquet PJ et al (2011) An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology 115:541–547CrossRefGoogle Scholar
  36. 36.
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831CrossRefGoogle Scholar
  37. 37.
    Edul VS, Ince C, Navarro N et al (2014) Dissociation between sublingual and gut microcirculation in the response to a fluid challenge in postoperative patients with abdominal sepsis. Ann Intensive Care 4:39CrossRefGoogle Scholar
  38. 38.
    Gardner AW, Parker DE, Montgomery PS et al (2015) Endothelial cell inflammation and antioxidant capacity are associated with exercise performance and microcirculation in patients with symptomatic peripheral artery disease. Angiology 66:867–874CrossRefGoogle Scholar
  39. 39.
    Roller J, Wang Y, Rahman M et al (2013) Direct in vivo observations of P-selectin glycoprotein ligand-1-mediated leukocyte-endothelial cell interactions in the pulmonary microvasculature in abdominal sepsis in mice. Inflamm Res 62:275–282CrossRefGoogle Scholar
  40. 40.
    Chesnutt JK, Marshall JS (2009) Effect of particle collisions and aggregation on red blood cell passage through a bifurcation. Microvasc Res 78:301–313CrossRefGoogle Scholar
  41. 41.
    Harrois A, Dupic L, Duranteau J (2011) Targeting the microcirculation in resuscitation of acutely unwell patients. Curr Opin Crit Care 17:303–307CrossRefGoogle Scholar
  42. 42.
    Hungerford JE, Sessa WC, Segal SS (2000) Vasomotor control in arterioles of the mouse cremaster muscle. FASEB J 14:197–207CrossRefGoogle Scholar
  43. 43.
    Ellsworth ML, Forrester T, Ellis CG, Dietrich HH (1995) The erythrocyte as a regulator of vascular tone. Am J Physiol 269:H2155–H2161PubMedGoogle Scholar
  44. 44.
    Jackson WF (2000) Ion channels and vascular tone. Hypertension 35:173–178CrossRefGoogle Scholar
  45. 45.
    Gottrup F, Gellett S, Kirkegaard L, Hansen ES, Johansen G (1989) Effect of hemorrhage and resuscitation on subcutaneous, conjunctival, and transcutaneous oxygen tension in relation to hemodynamic variables. Crit Care Med 17:904–907CrossRefGoogle Scholar
  46. 46.
    Singer M, Millar C, Stidwill R, Unwin R (1996) Bladder epithelial oxygen tension – a new means of monitoring regional perfusion? Preliminary study in a model of exsanguination/fluid repletion. Intensive Care Med 22:324–328CrossRefGoogle Scholar
  47. 47.
    Whitehouse T, Stotz M, Taylor V, Stidwill R, Singer M (2006) Tissue oxygen and hemodynamics in renal medulla, cortex, and corticomedullary junction during hemorrhage-reperfusion. Am J Physiol Renal Physiol 291:F647–F653CrossRefGoogle Scholar
  48. 48.
    Dyson A, Stidwill R, Taylor V, Singer M (2007) Tissue oxygen monitoring in rodent models of shock. Am J Physiol Heart Circ Physiol 293:H526–H533CrossRefGoogle Scholar
  49. 49.
    Ospina-Tascon G, Neves AP, Occhipinti G et al (2010) Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36:949–955CrossRefGoogle Scholar
  50. 50.
    Pranskunas A, Koopmans M, Koetsier PM, Pilvinis V, Boerma EC (2013) Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med 39:612–619CrossRefGoogle Scholar
  51. 51.
    Dyson A, Rudiger A, Singer M (2011) Temporal changes in tissue cardiorespiratory function during faecal peritonitis. Intensive Care Med 37:1192–1200CrossRefGoogle Scholar
  52. 52.
    Ince C (2015) Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care 19(Suppl 3):S8PubMedPubMedCentralGoogle Scholar
  53. 53.
    Brealey D, Karyampudi S, Jacques TS et al (2004) Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol 286:R491–R497CrossRefGoogle Scholar
  54. 54.
    Wodack KH, Poppe AM, Tomkotter L et al (2014) Individualized early goal-directed therapy in systemic inflammation: is full utilization of preload reserve the optimal strategy? Crit Care Med 42:e741–e751CrossRefGoogle Scholar
  55. 55.
    Ackland GL, Iqbal S, Paredes LG et al (2015) Individualised oxygen delivery targeted haemodynamic therapy in high-risk surgical patients: a multicentre, randomised, double-blind, controlled, mechanistic trial. Lancet Respir Med 3:33–41CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Intensive Care MedicineSt. George’s University Hospital, NHS Foundation TrustLondonUK
  2. 2.Unidad de Cuidados IntensivosHospital SAS de JerezJerez de la FronteraSpain

Personalised recommendations