Effects of Fluids on the Macro- and Microcirculations

  • V. A. Bennett
  • A. Vidouris
  • M. Cecconi
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)


Intravenous fluid administration is one of the most frequently performed interventions in the intensive care unit (ICU) and in hospital in general. In fact, most inpatients will receive fluids at some point during their hospital stay [1]. In critically ill patients, fluid resuscitation is a vital component of patient management. It has been shown that both too little and too much fluid can be detrimental. A positive cumulative fluid balance on day four of a critical care admission has been associated with increased morbidity [2, 3]. Both perioperatively and during sepsis, a U‐shaped curve has been described for volume of fluid administered and morbidity. Higher mortality is observed at both extremes of volume of fluid given [4, 5].

However, despite extensive research in the field, controversy remains regarding the best approach to fluid therapy. The FENICE study focused on the fluid challenge and found wide disparity in practice; from fluid choice to method of...


  1. 1.
    Padhi S, Bullock I, Li L, Stroud M, National Institute for Health and Care Excellence (NICE) Guideline Development Group (2013) Intravenous fluid therapy for adults in hospital: summary of NICE guidance. BMJ 347:f7073CrossRefGoogle Scholar
  2. 2.
    Boyd JH, Forbes J, Nakada T, Walley KR, Russell JA (2011) Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 39:259–265CrossRefGoogle Scholar
  3. 3.
    Vaara ST, Korhonen AM, Kaukonen K-M et al (2012) Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care 16:R197CrossRefGoogle Scholar
  4. 4.
    Liu V, Morehouse JW, Soule J, Whippy A, Escobar GJ (2013) Fluid volume, lactate values, and mortality in sepsis patients with intermediate lactate values. Ann Am Thorac Soc 10:466–473CrossRefGoogle Scholar
  5. 5.
    Bellamy MC (2006) Wet, dry or something else? Br J Anaesth 97:755–757CrossRefGoogle Scholar
  6. 6.
    Cecconi M, Hofer C, Teboul JL et al (2015) Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med 41:1529–1537CrossRefGoogle Scholar
  7. 7.
    Gruartmoner G, Mesquida J, Ince C (2015) Fluid therapy and the hypovolemic microcirculation. Curr Opin Crit Care 21:276–284CrossRefGoogle Scholar
  8. 8.
    Cecconi M, Parsons AK, Rhodes A (2011) What is a fluid challenge? Curr Opin Crit Care 17:290–295CrossRefGoogle Scholar
  9. 9.
    Charlton M, Sims M, Coats T, Thompson JP (2016) The microcirculation and its measurement in sepsis. J Intensive Care Soc 18:221–227CrossRefGoogle Scholar
  10. 10.
    Patterson SW, Piper H, Starling EH (1914) The regulation of the heart beat. J Physiol 48:465–513CrossRefGoogle Scholar
  11. 11.
    Patterson SW, Starling EH (1914) On the mechanical factors which determine the output of the ventricles. J Physiol 48:357–379CrossRefGoogle Scholar
  12. 12.
    Aya HD, Rhodes A, Fletcher N, Grounds RM, Cecconi M (2016) Transient stop-flow arm arterial-venous equilibrium pressure measurement: determination of precision of the technique. J Clin Monit Comput 30:55–61CrossRefGoogle Scholar
  13. 13.
    Aya HD, Ster IC, Fletcher N, Grounds RM, Rhodes A, Cecconi M (2015) Pharmacodynamic analysis of a fluid challenge. Crit Care Med 44:880–891CrossRefGoogle Scholar
  14. 14.
    Cecconi M, Aya HD, Geisen M et al (2013) Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med 39:1299–1305CrossRefGoogle Scholar
  15. 15.
    Nixon JV, Murray RG, Leonard PD, Mitchell JH, Blomqvist CG (1982) Effect of large variations in preload on left ventricular performance characteristics in normal subjects. Circulation 65:698–703CrossRefGoogle Scholar
  16. 16.
    Rivers E, Nguyen B, Havstad S et al (2001) Early goal directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377CrossRefGoogle Scholar
  17. 17.
    Dellinger RP, Levy MM, Carlet JM et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 34:17–60CrossRefGoogle Scholar
  18. 18.
    Bentzer P, Griesdale DE, Boyd J, MacLean K, Sirounis D, Ayas NT (2016) Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA 316:1298–1309CrossRefGoogle Scholar
  19. 19.
    Marik PE, Cavallazzi R (2013) Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 41:1774–1781CrossRefGoogle Scholar
  20. 20.
    Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? Chest 134:172–178CrossRefGoogle Scholar
  21. 21.
    Magdar S (2010) Fluid status and fluid responsiveness. Curr Opin Crit Care 16:289–296CrossRefGoogle Scholar
  22. 22.
    Ince C (2015) Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care 19(Suppl 3):S8PubMedPubMedCentralGoogle Scholar
  23. 23.
    Thiriet M (2014) Macrocirculation. In: Lanzer P (ed) PanVascular Medicine. Springer, Berlin, pp 1–54Google Scholar
  24. 24.
    Arnemann P, Seidel L, Ertmer C (2016) Haemodynamic coherence – the relevance of fluid therapy. Best Pract Res Clin Anaesthesiol 30:419–427CrossRefGoogle Scholar
  25. 25.
    Van Iterson M, Bezemer R, Heger M, Siegemund M, Ince C (2012) Microcirculation follows macrocirculation in heart and gut in the acute phase of hemorrhagic shock and isovolemic autologous whole blood resuscitation in pigs. Transfusion 52:1552–1559CrossRefGoogle Scholar
  26. 26.
    Siegemund M, Van Bommel J, Sinaasappel M et al (2007) The NO donor SIN-1 improves intestinal-arterial Pco2 gap in experimental endotoxemia: an animal study. Acta Anaesthesiol Scand 51:693–700CrossRefGoogle Scholar
  27. 27.
    Almac E, Siegemund M, Demirci C, Ince C (2006) Microcirculatory recruitment maneuvers correct tissue CO2 abnormalities in sepsis. Minerva Anestesiol 72:509–519Google Scholar
  28. 28.
    Lush CW, Kvietys PR (2000) Microvascular dysfunction in sepsis. Microcirculation 7:83–101CrossRefGoogle Scholar
  29. 29.
    Elbers PWG, Ince C (2006) Mechanisms of critical illness – classifying microcirculatory flow abnormalities in distributive shock. Crit Care 10:221CrossRefGoogle Scholar
  30. 30.
    Libert N, Harrois A, Duranteau J (2016) Haemodynamic coherence in haemorrhagic shock. Best Pract Res Clin Anaesthesiol 30:429–435CrossRefGoogle Scholar
  31. 31.
    Vellinga NA, Ince C, Boerma EC (2013) Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: a hypothesis generating post hoc analysis. BMC Anesthesiol 13:17CrossRefGoogle Scholar
  32. 32.
    De Backer D, Hollenberg S, Boerma C et al (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11:R101CrossRefGoogle Scholar
  33. 33.
    Tafner PFDA, Chen FK, Filho RR, Corrêa TD, Chaves RCF, Neto SA (2017) Recent advances in bedside microcirculation assessment in critically ill patients. Rev Bras Ter Intensiva 29(2):238–247CrossRefGoogle Scholar
  34. 34.
    Boldt J, Ince C (2010) The impact of fluid therapy on microcirculation and tissue oxygenation in hypovolemic patients: a review. Intensive Care Med 36:1299–1308CrossRefGoogle Scholar
  35. 35.
    Pranskunas A, Koopmans M, Koetsier PM, Pilvinis V, Boerma EC (2013) Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med 39:612–619CrossRefGoogle Scholar
  36. 36.
    Jhanji S, Lee C, Watson D, Hinds C, Pearse RM (2009) Microvascular flow and tissue oxygenation after major abdominal surgery: Association with post-operative complications. Intensive Care Med 35:671–677CrossRefGoogle Scholar
  37. 37.
    Ospina-Tascon G, Neves AP, Occhipinti G et al (2010) Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36:949–955CrossRefGoogle Scholar
  38. 38.
    De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523CrossRefGoogle Scholar
  39. 39.
    Marik PE, Cavallazzi R, Vasu T, Hirani A (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37:2642–2647CrossRefGoogle Scholar
  40. 40.
    Monnet X, Marik PE, Teboul JL (2016) Prediction of fluid responsiveness: an update. Ann Intensive Care 6:111CrossRefGoogle Scholar
  41. 41.
    Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL (2009) Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med 37:951–956CrossRefGoogle Scholar
  42. 42.
    Monnet X, Marik P, Teboul JL (2016) Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med 42:1935–1947CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Intensive Care MedicineSt George’s University Hospital NHS Foundation TrustLondonUK

Personalised recommendations