Persistent Inflammation, Immunosuppression and Catabolism after Severe Injury or Infection

Chapter
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)

References

  1. 1.
    Moore FA, Moore EE (1995) Evolving concepts in the pathogenesis of postinjury multiple organ failure. Surg Clin North Am 75:257–277CrossRefGoogle Scholar
  2. 2.
    Faist E, Baue AE, Dittmer H, Heberer G (1983) Multiple organ failure in polytrauma patients. J Trauma 23:775–787CrossRefGoogle Scholar
  3. 3.
    Moore FA, Sauaia A, Moore EE et al (1996) Postinjury multiple organ failure: a bimodal phenomenon. J Trauma 40:501–510CrossRefGoogle Scholar
  4. 4.
    Balogh Z, McKinley BA, Cox CS Jr et al (2003) Abdominal compartment syndrome: the cause or effect of postinjury multiple organ failure. Shock 20:483–492CrossRefGoogle Scholar
  5. 5.
    Sauaia A, Moore EE, Johnson JL et al (2014) Temporal trends of postinjury multiple-organ failure: still resource intensive, morbid, and lethal. J Trauma Acute Care Surg 76:582–592CrossRefGoogle Scholar
  6. 6.
    Gentile LF, Cuenca AG, Efron PA et al (2012) Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 72:1491–1501CrossRefGoogle Scholar
  7. 7.
    Cuschieri J, Johnson JL, Sperry J et al (2012) Benchmarking outcomes in the critically injured trauma patient and the effect of implementing standard operating procedures. Ann Surg 2555:993–999CrossRefGoogle Scholar
  8. 8.
    Mira JC, Cuschieri J, Ozrazgat-Baslanti T et al (2017) The epidemiology of chronic critical illness after severe traumatic injury at two-level one trauma centers. Crit Care Med 45:1989–1996CrossRefGoogle Scholar
  9. 9.
    Mira JC, Gentile LF, Mathias BJ et al (2017) Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Crit Care Med 452:253–262CrossRefGoogle Scholar
  10. 10.
    Stortz JA, Murphy TJ, Raymond SL et al (2017) Evidence for persistent immune suppression in patients who develop chronic critical illness after sepsis. Shock.  https://doi.org/10.1097/SHK.0000000000000981 (epub ahead of print)CrossRefGoogle Scholar
  11. 11.
    Herridge MS, Cheung AM, Tansey CM et al (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348:683–693CrossRefGoogle Scholar
  12. 12.
    Cheung AM, Tansey CM, Tomlinson G et al (2006) Two-year outcomes, health care use, and costs of survivors of acute respiratory distress syndrome. Am J Respir Crit Care Med 174:538–544CrossRefGoogle Scholar
  13. 13.
    Davidson GH, Hamlat CA, Rivara FP, Koepsell TD, Jurkovich GJ, Arbabi S (2011) Long-term survival of adult trauma patients. JAMA 305:1001–1007CrossRefGoogle Scholar
  14. 14.
    Yende S, Austin S, Rhodes A et al (2016) Long-term quality of life among survivors of severe sepsis: analyses of two international trials. Crit Care Med 44:1461–1467CrossRefGoogle Scholar
  15. 15.
    Rosenthal MD, Moore FA (2015) Persistent inflammatory, immunosuppressed, catabolic syndrome (PICS): a new phenotype of multiple organ failure. J Adv Nutr Hum Metab 1:e784PubMedPubMedCentralGoogle Scholar
  16. 16.
    Rosenthal MD, Moore FA (2016) Persistent inflammation, immunosuppression, and catabolism: evolution of multiple organ dysfunction. Surg Infect (larchmt) 17:167–172CrossRefGoogle Scholar
  17. 17.
    Pietras EM, Warr MR, Passegue E (2011) Cell cycle regulation in hematopoietic stem cells. J Cell Biol 195:709–720CrossRefGoogle Scholar
  18. 18.
    Goldszmid RS, Dzutsev A, Trinchieri G (2014) Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe 15:295–305CrossRefGoogle Scholar
  19. 19.
    Mira JC, Brakenridge SC, Moldawer LL, Moore FA (2017) Persistent inflammation, immunosuppression and catabolism syndrome. Crit Care Clin 33:245–258CrossRefGoogle Scholar
  20. 20.
    Boettcher S, Ziegler P, Schmid MA et al (2012) Cutting edge: LPS-induced emergency myelopoiesis depends on TLR4-expressing nonhematopoietic cells. J Immunol 188:5824–5828CrossRefGoogle Scholar
  21. 21.
    Boiko JR, Borghesi L (2012) Hematopoiesis sculpted by pathogens: toll-like receptors and inflammatory mediators directly activate stem cells. Cytokine 57:1–8CrossRefGoogle Scholar
  22. 22.
    Cuenca AG, Delano MJ, Kelly-Scumpia KM et al (2011) A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol Med 17:281–292CrossRefGoogle Scholar
  23. 23.
    Hotchkiss RS, Moldawer LL (2014) Parallels between cancer and infectious disease. N Engl J Med 371:380–383CrossRefGoogle Scholar
  24. 24.
    Mathias B, Delmas AL, Ozrazgat-Baslanti T et al (2017) Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann Surg 265:827–834CrossRefGoogle Scholar
  25. 25.
    Uhel F, Azzaoui I, Gregoire M et al (2017) Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. Am J Respir Crit Care Med 196:315–327CrossRefGoogle Scholar
  26. 26.
    Hotchkiss RS, Moldawer LL, Opal SM et al (2016) Sepsis and septic shock. Nat Rev Dis Primers 2:16045CrossRefGoogle Scholar
  27. 27.
    Xiao W, Mindrinos MN, Seok J et al (2011) A genomic storm in critically injured humans. J Exp Med 208:2581–2590CrossRefGoogle Scholar
  28. 28.
    Nacionales DC, Gentile LF, Vanzant E et al (2014) Aged mice are unable to mount an effective myeloid response to sepsis. J Immunol 192:612–622CrossRefGoogle Scholar
  29. 29.
    Nacionales DC, Szpila B, Ungaro R et al (2015) A detailed characterization of the dysfunctional immunity and abnormal myelopoiesis induced by severe shock and trauma in the aged. J Immunol 195:2396–2407CrossRefGoogle Scholar
  30. 30.
    Efron PA, Martins A, Minnich D et al (2004) Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. J Immunol 173:3035–3043CrossRefGoogle Scholar
  31. 31.
    Baldridge MT, King KY, Goodell MA (2011) Inflammatory signals regulate hematopoietic stem cells. Trends Immunol 32:57–65CrossRefGoogle Scholar
  32. 32.
    Skirecki T, Kawiak J, Machaj E et al (2015) Early severe impairment of hematopoietic stem and progenitor cells from the bone marrow caused by CLP sepsis and endotoxemia in a humanized mice model. Stem Cell Res Ther 6:142CrossRefGoogle Scholar
  33. 33.
    Zhang H, Rodriguez S, Wang L et al (2016) Sepsis Induces hematopoietic stem cell exhaustion and myelosuppression through distinct contributions of TRIF and MYD88. Stem Cell Reports 6:940–956CrossRefGoogle Scholar
  34. 34.
    Yang N, Li B, Ye B et al (2017) The long-term quality of life in patients with persistent inflammation-immunosuppression and catabolism syndrome after severe acute pancreatitis: A retrospective cohort study. J Crit Care 42:101–106CrossRefGoogle Scholar
  35. 35.
    Loftus TJ, Mira JC, Ozrazgat-Baslanti T et al (2017) Sepsis and Critical Illness Research Center investigators: protocols and standard operating procedures for a prospective cohort study of sepsis in critically ill surgical patients. BMJ Open 7:e15136CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • P. A. Efron
    • 1
  • F. A. Moore
    • 1
  • S. C. Brakenridge
    • 1
  1. 1.Departments of Surgery and the Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleUSA

Personalised recommendations