Skip to main content

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 2138 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoste EAJ, Bagshaw SM, Bellomo R et al (2015) Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 41:1411–1423

    Article  PubMed  Google Scholar 

  2. Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9(Suppl 4):S13–S19

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ince C (2015) Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care 19(Suppl 3):S8

    PubMed  PubMed Central  Google Scholar 

  4. Evans RG, Ince C, Joles JA et al (2013) Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology. Clin Exp Pharmacol Physiol 40:106–122

    Article  CAS  PubMed  Google Scholar 

  5. Pallone TL, Edwards A, Mattson DL (2012) Renal medullary circulation. Compr Physiol 2:97–140

    PubMed  Google Scholar 

  6. Haraldsson B, Nyström J, Deen WM (2008) Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 88:451–487

    Article  CAS  PubMed  Google Scholar 

  7. Satchell SC, Braet F (2009) Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol 296:F947–F956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Evans RG, Gardiner BS, Smith DW, O’Connor PM (2008) Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol 295:F1259–F1270

    Article  CAS  PubMed  Google Scholar 

  9. Pallone TL, Silldorff EP, Turner MR (1998) Intrarenal blood flow: microvascular anatomy and the regulation of medullary perfusion. Clin Exp Pharmacol Physiol 25:383–392

    Article  CAS  PubMed  Google Scholar 

  10. Aird WC (2003) The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101:3765–3777

    Article  CAS  PubMed  Google Scholar 

  11. O’Connor PM, Anderson WP, Kett MM, Evans RG (2006) Renal preglomerular arterial-venous O2 shunting is a structural anti-oxidant defence mechanism of the renal cortex. Clin Exp Pharmacol Physiol 33:637–641

    Article  PubMed  Google Scholar 

  12. Lassen NA, Munck O, Thaysen JH (1961) Oxygen consumption and sodium reabsorption in the kidney. Acta Physiol Scand 51:371–384

    Article  CAS  PubMed  Google Scholar 

  13. Evans RG, Goddard D, Eppel GA, O’Connor PM (2011) Factors that render the kidney susceptible to tissue hypoxia in hypoxemia. Am J Physiol Regul Integr Comp Physiol 300:R931–R940

    Article  CAS  PubMed  Google Scholar 

  14. Nangaku M, Eckardt K-U (2007) Hypoxia and the HIF system in kidney disease. J Mol Med 85:1325–1330

    Article  PubMed  Google Scholar 

  15. Abraham NG, Cao J, Sacerdoti D, Li X, Drummond G (2009) Heme oxygenase: the key to renal function regulation. Am J Physiol Renal Physiol 297:F1137–F1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aykut G, Veenstra G, Scorcella C, Ince C, Boerma C (2015) Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp 3:40

    Article  PubMed  Google Scholar 

  17. Massey MJ, Shapiro NI (2015) A guide to human in vivo microcirculatory flow image analysis. Crit Care 20:35–35

    Article  Google Scholar 

  18. Legrand M, Bezemer R, Kandil A, Demirci C, Payen D, Ince C (2011) The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Intensive Care Med 37:1534–1542

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schneider AG, Goodwin MD, Schelleman A, Bailey M, Johnson L, Bellomo R (2014) Contrast-enhanced ultrasonography to evaluate changes in renal cortical microcirculation induced by noradrenaline: a pilot study. Crit Care 18:653

    Article  PubMed  PubMed Central  Google Scholar 

  20. Johannes T, Mik EG, Ince C (2006) Dual-wavelength phosphorimetry for determination of cortical and subcortical microvascular oxygenation in rat kidney. J Appl Physiol 100:1301–1310

    Article  PubMed  Google Scholar 

  21. Guerci P, Ince Y, Faber D, Ergin B (2017) A LED-based phosphorimeter for measurement of microcirculatory oxygen pressure. J Appl Physiol 122:307–316

    Article  CAS  PubMed  Google Scholar 

  22. Ruf B, Bonelli V, Balling G et al (2015) Intraoperative renal near-infrared spectroscopy indicates developing acute kidney injury in infants undergoing cardiac surgery with cardiopulmonary bypass: a case-control study. Crit Care 19:27

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhou HY, Chen TW, Zhang XM (2016) Functional magnetic resonance imaging in acute kidney injury: present status. Biomed Res Int 2016:2027370

    PubMed  PubMed Central  Google Scholar 

  24. Snoeijs MG, Vink H, Voesten N et al (2010) Acute ischemic injury to the renal microvasculature in human kidney transplantation. Am J Physiol Renal Physiol 299:F1134–F1140

    Article  CAS  PubMed  Google Scholar 

  25. Gomez H, Ince C, De Backer D et al (2014) A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 41:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matejovic M, Ince C, Chawla LS et al (2016) Renal hemodynamics in AKI: in search of new treatment targets. J Am Soc Nephrol 27:49–58

    Article  PubMed  Google Scholar 

  27. Bellomo R, Kellum JA, Ronco C et al (2017) Acute kidney injury in sepsis. Intensive Care Med 8:R204

    Google Scholar 

  28. Maiden MJ, Otto S, Brealey JK et al (2016) Structure and function of the kidney in septic shock: a prospective controlled experimental study. Am J Respir Crit Care Med 194:692–700. https://doi.org/10.1164/rccm.201511-2285OC

    Article  PubMed  Google Scholar 

  29. Langenberg C, Gobe G, Hood S, May CN, Bellomo R (2014) Renal histopathology during experimental septic acute kidney injury and recovery. Crit Care Med 42:e58–e67

    Article  CAS  PubMed  Google Scholar 

  30. Johannes T, Mik EG, Nohé B, Raat NJH, Unertl KE, Ince C (2006) Influence of fluid resuscitation on renal microvascular PO2 in a normotensive rat model of endotoxemia. Crit Care 10:R88

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bonventre JV, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121:4210–4221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ince C, Mayeux PR, Nguyen T et al (2016) The endothelium in sepsis. Shock 45:259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Molitoris BA (2014) Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J Clin Invest 124:2355–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goldenberg NM, Steinberg BE, Slutsky AS, Lee WL (2011) Broken barriers: a new take on sepsis pathogenesis. Sci Transl Med 3:88ps25–88ps25

    Article  CAS  PubMed  Google Scholar 

  35. Salmon AHJ, Satchell SC (2012) Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol 226:562–574

    Article  CAS  PubMed  Google Scholar 

  36. Xu C, Chang A, Hack BK, Eadon MT, Alper SL, Cunningham PN (2014) TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis. Kidney Int 85:72–81

    Article  CAS  PubMed  Google Scholar 

  37. Wu X, Guo R, Wang Y, Cunningham PN (2007) The role of ICAM-1 in endotoxin-induced acute renal failure. Am J Physiol Renal Physiol 293:F1262–F1271

    Article  CAS  PubMed  Google Scholar 

  38. Siner JM, Bhandari V, Engle KM, Elias JA, Siegel MD (2009) Elevated serum angiopoietin 2 levels are associated with increased mortality in sepsis. Shock 31:348–353

    Article  CAS  PubMed  Google Scholar 

  39. Noiri E, Nakao A, Uchida K et al (2001) Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol 281:F948–957

    Article  CAS  PubMed  Google Scholar 

  40. Legrand M, Almac E, Mik EG et al (2009) L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am J Physiol Renal Physiol 296:F1109–F1117

    Article  CAS  PubMed  Google Scholar 

  41. Haase VH (2013) Mechanisms of hypoxia responses in renal tissue. J Am Soc Nephrol 24:537–541

    Article  CAS  PubMed  Google Scholar 

  42. Castoldi A, Braga TT, Correa-Costa M et al (2012) TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil migration in acute kidney injury induced by sepsis. PLoS One 7:e37584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nath KA, Balla G, Vercellotti GM et al (1992) Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. J Clin Invest 90:267–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shimizu H, Takahashi T, Suzuki T et al (2000) Protective effect of heme oxygenase induction in ischemic acute renal failure. Crit Care Med 28:809–817

    Article  CAS  PubMed  Google Scholar 

  45. Tracz MJ, Juncos JP, Grande JP et al (2007) Renal hemodynamic, inflammatory, and apoptotic responses to lipopolysaccharide in HO-1-/- mice. Am J Pathol 170:1820–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tullius SG, Nieminen-Kelhä M, Buelow R et al (2002) Inhibition of ischemia/reperfusion injury and chronic graft deterioration by a single-donor treatment with cobalt-protoporphyrin for the induction of heme oxygenase-1. Transplantation 74:591–598

    Article  CAS  PubMed  Google Scholar 

  47. Gullichsen E, Nelimarkka O, Halkola L, Niinikoski J (1989) Renal oxygenation in endotoxin shock in dogs. Crit Care Med 17:547–550

    Article  CAS  PubMed  Google Scholar 

  48. Brezis M, Agmon Y, Epstein FH (1994) Determinants of intrarenal oxygenation. I. Effects of diuretics. Am J Physiol 267:F1059–F1062

    CAS  PubMed  Google Scholar 

  49. Zafrani L, Ergin B, Kapucu A, Ince C (2016) Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats. Crit Care 20:406

    Article  PubMed  PubMed Central  Google Scholar 

  50. Alayash AI (2014) Blood substitutes: why haven’t we been more successful? Trends Biotechnol 32:177–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Guerci, P., Ergin, B., Ince, C. (2018). Acute Kidney Injury and Microcirculatory Shock. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2018. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-73670-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73670-9_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73669-3

  • Online ISBN: 978-3-319-73670-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics