Emerging Technology Platforms for Optical Molecular Imaging and Sensing at the Alveolar Level in the Critically ill

  • T. H. Craven
  • T. S. Walsh
  • K. Dhaliwal
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)


Advances in the understanding of various disease processes have outstripped the clinical care of critically ill patients. Diagnosis, quantification, monitoring and management are often determined through pattern recognition of clinical features rather than reliance on ‘true’ pathological sampling. There is a great deal of uncertainty surrounding the true presence of disease in many organ systems and especially in pulmonary critical care in diseases such as pneumonia and acute respiratory distress syndrome (ARDS). Formal pulmonary biopsy may provide certainty regarding the diagnosis but is not often performed due to perceived peril, patchy nature of a single sample and the absence of serial biopsy to facilitate monitoring. New developments in biophotonics, fiberoptics, chemistry and image analysis may provide the opportunity to perform real time in vivooptical molecular biopsy at the bedside. Healthcare biophotonics is a relatively novel, interdisciplinary science that...


  1. 1.
    Coda S, Siersema PD, Stamp GWH, Thillainayagam AV (2015) Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer. Endosc Int Open 3:E380–E392CrossRefGoogle Scholar
  2. 2.
    Thakur M, Lentle BC (2005) Report of a summit on molecular imaging. Radiology 236:753–755CrossRefGoogle Scholar
  3. 3.
    Pezacki JP, Blake JA, Danielson DC et al (2011) Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat Chem Biol 7:137–145CrossRefGoogle Scholar
  4. 4.
    Dorward DA, Lucas CD, Rossi AG et al (2012) Imaging inflammation: molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution. Pharmacol Ther 135:182–199CrossRefGoogle Scholar
  5. 5.
    Carignan CS, Yagi Y (2012) Optical endomicroscopy and the road to real-time, in vivo pathology: present and future. Diagn Pathol 7:98CrossRefGoogle Scholar
  6. 6.
    Krstajic N, Akram AR, Choudhary TR et al (2016) Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue. J Biomed Opt 21:46009CrossRefGoogle Scholar
  7. 7.
    Stone JM, Wood HAC, Harrington K, Birks TA (2017) Low index contrast imaging fibers. Opt Lett 42:1484CrossRefGoogle Scholar
  8. 8.
    Lane PM, Lam S, McWilliams A et al (2009) Confocal fluorescence microendoscopy of bronchial epithelium. J Biomed Opt 14:24008CrossRefGoogle Scholar
  9. 9.
    Laemmel E, Genet M, Le Goualher G et al (2004) Fibered confocal fluorescence microscopy (Cell-viZioTM) facilitates extended imaging in the field of microcirculation. J Vasc Res 41:400–411CrossRefGoogle Scholar
  10. 10.
    Osdoit A, Lacombe F, Cavé C et al (2007) To see the unseeable: confocal miniprobes for routine microscopic imaging during endoscopy. In: Tearney GJ, Wang TD (eds) Endoscocpic Microscopy II. Proceedings of the SPIE, vol 6432. (Article id. 64320F)Google Scholar
  11. 11.
    Paull PE, Hyatt BJ, Wassef W, Fischer AH (2011) Confocal laser endomicroscopy: a primer for pathologists. Arch Pathol Lab Med 135:1343–1348CrossRefGoogle Scholar
  12. 12.
    Dunbar KB, Okolo P, Montgomery E, Canto MI (2009) Confocal laser endomicroscopy in Barrett’s esophagus and endoscopically inapparent Barrett’s neoplasia: a prospective, randomized, double-blind, controlled, crossover trial. Gastrointest Endosc 70:645–654CrossRefGoogle Scholar
  13. 13.
    Kiesslich R, Gossner L, Goetz M et al (2006) In vivo histology of barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy. Clin Gastroenterol Hepatol 4:979–987CrossRefGoogle Scholar
  14. 14.
    Napoléon B, Lemaistre AI, Pujol B et al (2014) A novel approach to the diagnosis of pancreatic serous cystadenoma: needle-based confocal laser endomicroscopy. Endoscopy 47:26–32CrossRefGoogle Scholar
  15. 15.
    Napoleon B, Lemaistre AI, Pujol B et al (2016) In vivo characterization of pancreatic cystic lesions by needle-based confocal laser endomicroscopy (nCLE): proposition of a comprehensive nCLE classification confirmed by an external retrospective evaluation. Surg Endosc 30:2603–2612CrossRefGoogle Scholar
  16. 16.
    Loeser CS, Robert ME, Mennone A et al (2011) Confocal endomicroscopic examination of malignant biliary strictures and histologic correlation with lymphatics. J Clin Gastroenterol 45:246–252CrossRefGoogle Scholar
  17. 17.
    Kahaleh M, Giovannini M, Jamidar P et al (2015) Probe-based confocal laser endomicroscopy for indeterminate biliary strictures: refinement of the image interpretation classification. Gastroenterol Res Pract 2015:675210CrossRefGoogle Scholar
  18. 18.
    Hlavaty T, Huorka M, Koller T et al (2011) Colorectal cancer screening in patients with ulcerative and crohn’s colitis with use of colonoscopy, chromoendoscopy and confocal endomicroscopy. Eur J Gastroenterol Hepatol 23:680–689CrossRefGoogle Scholar
  19. 19.
    Kiesslich R, Duckworth CA, Moussata D et al (2012) Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut 61:1146–1153CrossRefGoogle Scholar
  20. 20.
    Thiberville L, Salaün M, Lachkar S et al (2009) Confocal fluorescence endomicroscopy of the human airways. Proc Am Thorac Soc 6:444–449CrossRefGoogle Scholar
  21. 21.
    Thiberville L, Salaün M, Lachkar S et al (2009) Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur Respir J 33:974–985CrossRefGoogle Scholar
  22. 22.
    Gabrecht T, Andrejevic-Blant S, Wagnières G (2007) Blue-violet excited autofluorescence spectroscopy and imaging of normal and cancerous human bronchial tissue after formalin fixation. Photochem Photobiol 83:450–459CrossRefGoogle Scholar
  23. 23.
    Thiberville L, Moreno-Swirc S, Vercauteren T et al (2007) In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am J Respir Crit Care Med 175:22–31CrossRefGoogle Scholar
  24. 24.
    Hassan T, Piton N, Lachkar S, Salaün M, Thiberville L (2015) A novel method for in vivo imaging of solitary lung nodules using navigational bronchoscopy and confocal laser microendoscopy. Lung 193:773–778CrossRefGoogle Scholar
  25. 25.
    Seth S, Akram AR, McCool P et al (2016) Assessing the utility of autofluorescence-based pulmonary optical endomicroscopy to predict the malignant potential of solitary pulmonary nodules in humans. Sci Rep 6:31372CrossRefGoogle Scholar
  26. 26.
    Yserbyt J, Dooms C, Decramer M, Verleden GM (2014) Acute lung allograft rejection: diagnostic role of probe-based confocal laser endomicroscopy of the respiratory tract. J Heart Lung Transpl 33:492–498CrossRefGoogle Scholar
  27. 27.
    Yick CY, von der Thüsen JH, Bel EH, Sterk PJ, Kunst PW (2011) In vivo imaging of the airway wall in asthma: fibered confocal fluorescence microscopy in relation to histology and lung function. Respir Res 12:85CrossRefGoogle Scholar
  28. 28.
    Newton RC, Kemp SV, Yang GZ et al (2012) Imaging parenchymal lung diseases with confocal endomicroscopy. Respir Med 106:127–137CrossRefGoogle Scholar
  29. 29.
    Shafiek H, Fiorentino F, Cosio BG et al (2016) Usefulness of bronchoscopic probe-based confocal laser endomicroscopy in the diagnosis of Pneumocystis jirovecii pneumonia. Respiration 92:40–47CrossRefGoogle Scholar
  30. 30.
    Salaün M, Roussel F, Hauss PA, Lachkar S, Thiberville L (2010) In vivo imaging of pulmonary alveolar proteinosis using confocal endomicroscopy. Eur Respir J 36:451–453CrossRefGoogle Scholar
  31. 31.
    Danilevskaya O, Averyanov A, Lesnyak V et al (2015) Confocal laser endomicroscopy for diagnosis and monitoring of pulmonary alveolar proteinosis. J Bronchology Interv Pulmonol 22:33–40CrossRefGoogle Scholar
  32. 32.
    Salaün M, Roussel F, Bourg-Heckly G et al (2013) In vivo probe-based confocal laser endomicroscopy in amiodarone-related pneumonia. Eur Respir J 42:1646–1658CrossRefGoogle Scholar
  33. 33.
    Marien A, Rock A, El Maadarani K et al (2017) Urothelial tumors and dual-band imaging: a new concept in confocal laser endomicroscopy. J Endourol 31:538–544CrossRefGoogle Scholar
  34. 34.
    Chen K, Chen X (2010) Design and development of molecular imaging probes. Curr Top Med Chem 10:1227–1236CrossRefGoogle Scholar
  35. 35.
    Garland M, Yim JJ, Bogyo M (2016) A Bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem Biol 23:122–136CrossRefGoogle Scholar
  36. 36.
    Blum G, Weimer RM, Edgington LE et al (2009) Comparative assessment of substrates and activity based probes as tools for non-invasive optical imaging of cysteine protease activity. PLoS One 4:e6374CrossRefGoogle Scholar
  37. 37.
    Ha Y (2009) Structure and mechanism of intramembrane protease. Semin Cell Dev Biol 20:240–250CrossRefGoogle Scholar
  38. 38.
    Mills B, Bradley M, Dhaliwal K (2016) Optical imaging of bacterial infections. Clin Transl Imaging 4:163–174CrossRefGoogle Scholar
  39. 39.
    Akram AR, Avlonitis N, Craven T et al (2016) Structural modifications of the antimicrobial peptide ubiquicidin for pulmonary imaging of bacteria in the alveolar space. Lancet 387(suppl 1):S17 (abst)CrossRefGoogle Scholar
  40. 40.
    Akram AR, Avlonitis N, Lilienkampf A et al (2015) A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue. Chem Sci 6:6971–6979CrossRefGoogle Scholar
  41. 41.
    Williams AE, Chambers RC (2014) The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol 306:L217–L230CrossRefGoogle Scholar
  42. 42.
    Thille AW, Esteban A, Fernández-Segoviano P et al (2013) Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med 187:761–767CrossRefGoogle Scholar
  43. 43.
    Bellani G, Laffey JG, Pham T et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315:788–800CrossRefGoogle Scholar
  44. 44.
    Tanner MG, Choudhary TR, Craven TH et al (2017) Ballistic and snake photon imaging for locating optical endomicroscopy fibres. Biomed Opt Express 8:4077CrossRefGoogle Scholar
  45. 45.
    Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684CrossRefGoogle Scholar
  46. 46.
    Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541CrossRefGoogle Scholar
  47. 47.
    Choudhury D, Tanner MG, McAughtrie S et al (2017) Endoscopic sensing of alveolar pH. Biomed Opt Express 8:243CrossRefGoogle Scholar
  48. 48.
    Mohamad F, Tanner MG, Choudhury D et al (2017) Controlled core-to-core photo-polymerisation – fabrication of an optical fibre-based pH sensor. Analyst 41:918–926Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Edinburgh Critical Care Research GroupUniversity of EdinburghEdinburghUK
  2. 2.EPSRC IRC Proteus Hub, MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUK

Personalised recommendations