Skip to main content

Optimal Oxygen and Carbon Dioxide Targets During and after Resuscitated Cardiac Arrest

  • Chapter
Book cover Annual Update in Intensive Care and Emergency Medicine 2018

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grasner JT, Lefering R, Koster RW et al (2016) Eureca ONE-27 nations, ONE europe, ONE registry: a prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in europe. Resuscitation 105:188–195

    Article  Google Scholar 

  2. Bottiger BW, Grasner JT, Castren M (2014) Sudden cardiac death: good perspectives with this major health care issue. Intensive Care Med 40:907–909

    Article  Google Scholar 

  3. Lund-Kordahl I, Olasveengen TM, Lorem T, Samdal M, Wik L, Sunde K (2010) Improving outcome after out-of-hospital cardiac arrest by strengthening weak links of the local Chain of Survival; quality of advanced life support and post-resuscitation care. Resuscitation 81:422–426

    Article  Google Scholar 

  4. Lopez-Herce J, Carrillo A (2012) How can we improve the results of cardiopulmonary resuscitation in out-of-hospital cardiac arrest in children? Dispatcher-assisted cardiopulmonary resuscitation is a link in the chain of survival. Crit Care Med 40:1646–1647

    Article  Google Scholar 

  5. Larsen MP, Eisenberg MS, Cummins RO, Hallstrom AP (1993) Predicting survival from out-of-hospital cardiac arrest: a graphic model. Ann Emerg Med 22:1652–1658

    Article  CAS  Google Scholar 

  6. Soar J, Nolan JP, Bottiger BW et al (2015) European resuscitation council guidelines for resuscitation 2015: section 3. adult advanced life support. Resuscitation 95:100–147

    Article  Google Scholar 

  7. Lemiale V, Dumas F, Mongardon N et al (2013) Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med 39:1972–1980

    Article  Google Scholar 

  8. Sekhon MS, Ainslie PN, Griesdale DE (2017) Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care 21:90

    Article  PubMed  Google Scholar 

  9. Nolan JP, Soar J, Cariou A et al (2015) European Resuscitation Council and European Society of Intensive Care Medicine 2015 guidelines for post-resuscitation care. Intensive Care Med 41:2039–2056

    Article  Google Scholar 

  10. Neumar RW (2011) Optimal oxygenation during and after cardiopulmonary resuscitation. Curr Opin Crit Care 17:236–240

    Article  Google Scholar 

  11. Imberti R, Bellinzona G, Riccardi F, Pagani M, Langer M (2003) Cerebral perfusion pressure and cerebral tissue oxygen tension in a patient during cardiopulmonary resuscitation. Intensive Care Med 29:1016–1019

    Article  Google Scholar 

  12. Genbrugge C, Eertmans W, Jans F, Boer W, Dens J, De Deyne C (2017) Regional cerebral saturation monitoring during withdrawal of life support until death. Resuscitation 121:147–150

    Article  Google Scholar 

  13. Skrifvars MB, Nurmi J, Ikola K, Saarinen K, Castren M (2006) Reduced survival following resuscitation in patients with documented clinically abnormal observations prior to in-hospital cardiac arrest. Resuscitation 70:215–222

    Article  Google Scholar 

  14. Nelskyla A, Nurmi J, Jousi M et al (2017) The effect of 50% compared to 100% inspired oxygen fraction on brain oxygenation and post cardiac arrest mitochondrial function in experimental cardiac arrest. Resuscitation 116:1–7

    Article  Google Scholar 

  15. Yu J, Ramadeen A, Tsui AK et al (2013) Quantitative assessment of brain microvascular and tissue oxygenation during cardiac arrest and resuscitation in pigs. Anaesthesia 68:723–735

    Article  CAS  Google Scholar 

  16. Yeh ST, Cawley RJ, Aune SE, Angelos MG (2009) Oxygen requirement during cardiopulmonary resuscitation (CPR) to effect return of spontaneous circulation. Resuscitation 80:951–955

    Article  Google Scholar 

  17. Steen S, Liao Q, Pierre L, Paskevicius A, Sjoberg T (2003) The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation. Resuscitation 58:249–258

    Article  Google Scholar 

  18. Svensson L, Bohm K, Castren M et al (2010) Compression-only CPR or standard CPR in out-of-hospital cardiac arrest. N Engl J Med 363:434–442

    Article  CAS  Google Scholar 

  19. Rosenthal G, Hemphill JC 3rd, Sorani M et al (2008) Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med 36:1917–1924

    Article  CAS  Google Scholar 

  20. Spindelboeck W, Schindler O, Moser A et al (2013) Increasing arterial oxygen partial pressure during cardiopulmonary resuscitation is associated with improved rates of hospital admission. Resuscitation 84:770–775

    Article  Google Scholar 

  21. Spindelboeck W, Gemes G, Strasser C et al (2016) Arterial blood gases during and their dynamic changes after cardiopulmonary resuscitation: a prospective clinical study. Resuscitation 106:24–29

    Article  Google Scholar 

  22. Cournoyer A, Iseppon M, Chauny JM, Denault A, Cossette S, Notebaert E (2016) Near-infrared spectroscopy monitoring during cardiac arrest: a systematic review and meta-analysis. Acad Emerg Med 23:851–862

    Article  Google Scholar 

  23. Ito N, Nishiyama K, Callaway CW et al (2014) Noninvasive regional cerebral oxygen saturation for neurological prognostication of patients with out-of-hospital cardiac arrest: a prospective multicenter observational study. Resuscitation 85:778–784

    Article  Google Scholar 

  24. Touma O, Davies M (2013) The prognostic value of end tidal carbon dioxide during cardiac arrest: a systematic review. Resuscitation 84:1470–1479

    Article  Google Scholar 

  25. Trzeciak S, Jones AE, Kilgannon JH et al (2009) Significance of arterial hypotension after resuscitation from cardiac arrest. Crit Care Med 37:2895–2903

    Article  Google Scholar 

  26. Young P, Bailey M, Bellomo R et al (2014) HyperOxic Therapy OR NormOxic Therapy after out-of-hospital cardiac arrest (HOT OR NOT): a randomised controlled feasibility trial. Resuscitation 85:1686–1691

    Article  Google Scholar 

  27. Nelskyla A, Parr MJ, Skrifvars MB (2013) Prevalence and factors correlating with hyperoxia exposure following cardiac arrest – an observational single centre study. Scand J Trauma Resusc Emerg Med 21:35

    Article  PubMed  Google Scholar 

  28. Kuisma M, Boyd J, Voipio V, Alaspaa A, Roine RO, Rosenberg P (2006) Comparison of 30 and the 100% inspired oxygen concentrations during early post-resuscitation period: a randomised controlled pilot study. Resuscitation 69:199–206

    Article  CAS  Google Scholar 

  29. Kilgannon JH, Jones AE, Shapiro NI et al (2010) Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA 303:2165–2171

    Article  CAS  Google Scholar 

  30. Kilgannon JH, Jones AE, Parrillo JE et al (2011) Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation 123:2717–2722

    Article  CAS  Google Scholar 

  31. Bellomo R, Bailey M, Eastwood GM et al (2011) Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest. Crit Care 15:R90

    Article  PubMed  Google Scholar 

  32. Yenari MA, Han HS (2012) Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci 13:267–278

    Article  CAS  Google Scholar 

  33. Janz DR, Hollenbeck RD, Pollock JS, McPherson JA, Rice TW (2012) Hyperoxia is associated with increased mortality in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. Crit Care Med 40:3135–3139

    Article  CAS  PubMed  Google Scholar 

  34. Helmerhorst HJ, Roos-Blom MJ, van Westerloo DJ, Abu-Hanna A, de Keizer NF, de Jonge E (2015) Associations of arterial carbon dioxide and arterial oxygen concentrations with hospital mortality after resuscitation from cardiac arrest. Crit Care 19:348

    Article  PubMed  Google Scholar 

  35. Edgren E, Enblad P, Grenvik A et al (2003) Cerebral blood flow and metabolism after cardiopulmonary resuscitation. Resuscitation 57:161–170

    Article  Google Scholar 

  36. Buunk G, van der Hoeven JG, Meinders AE (1999) Prognostic significance of the difference between mixed venous and jugular bulb oxygen saturation. Resuscitation 41:257–262

    Article  CAS  Google Scholar 

  37. Beckstead JE, Tweed WA, Lee J, MacKeen WL (1978) Cerebral blood flow and metabolism in man following cardiac arrest. Stroke 9:569–573

    Article  CAS  Google Scholar 

  38. Storm C, Leithner C, Krannich A et al (2014) Regional cerebral oxygen saturation after cardiac arrest in 60 patients – a prospective outcome study. Resuscitation 85:1037–1041

    Article  CAS  Google Scholar 

  39. Wiklund L, Martijn C, Miclescu A, Semenas E, Rubertsson S, Sharma HS (2012) Central nervous tissue damage after hypoxia and reperfusion in conjunction with cardiac arrest and cardiopulmonary resuscitation: mechanisms of action and possibilities for mitigation. Int Rev Neurobiol 102:173–187

    Article  CAS  Google Scholar 

  40. O’Croinin D, Ni Chonghaile M, Higgins B, Laffey JG (2005) Bench-to-bedside review: permissive hypercapnia. Crit Care 9:51–59

    Article  Google Scholar 

  41. Curley G, Laffey JG, Kavanagh BP (2010) Bench-to-bedside review: carbon dioxide. Crit Care 14:220

    Article  PubMed  Google Scholar 

  42. Gyarfas K, Pollock GH, Stein SN (1949) Central inhibitory effects of carbon dioxide; convulsive phenomena. Proc Soc Exp Biol Med 70:292

    Article  CAS  Google Scholar 

  43. Shoja MM, Tubbs RS, Shokouhi G, Loukas M, Ghabili K, Ansarin K (2008) The potential role of carbon dioxide in the neuroimmunoendocrine changes following cerebral ischemia. Life Sci 83:381–387

    Article  CAS  Google Scholar 

  44. Eastwood GM, Tanaka A, Bellomo R (2016) Cerebral oxygenation in mechanically ventilated early cardiac arrest survivors: the impact of hypercapnia. Resuscitation 102:11–16

    Article  Google Scholar 

  45. Roberts BW, Kilgannon JH, Chansky ME, Mittal N, Wooden J, Trzeciak S (2013) Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. Circulation 127:2107–2113

    Article  CAS  Google Scholar 

  46. Schneider AG, Eastwood GM, Bellomo R et al (2013) Arterial carbon dioxide tension and outcome in patients admitted to the intensive care unit after cardiac arrest. Resuscitation 84:927–934

    Article  Google Scholar 

  47. Lee BK, Jeung KW, Lee HY et al (2014) Association between mean arterial blood gas tension and outcome in cardiac arrest patients treated with therapeutic hypothermia. Am J Emerg Med 32:55–60

    Article  Google Scholar 

  48. Eastwood GM, Schneider AG, Suzuki S et al (2016) Targeted therapeutic mild hypercapnia after cardiac arrest: a phase II multi-centre randomised controlled trial (the CCC trial). Resuscitation 104:83–90

    Article  Google Scholar 

  49. Jakkula P, Reinikainen M, Hästbacka J et al (2017) Targeting low- or high-normal Carbon dioxide, Oxygen, and Mean arterial pressure After Cardiac Arrest and Resuscitation: study protocol for a randomized pilot trial. Trials 18:507

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Skrifvars .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Skrifvars, M.B., Eastwood, G.M., Bellomo, R. (2018). Optimal Oxygen and Carbon Dioxide Targets During and after Resuscitated Cardiac Arrest. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2018. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-73670-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73670-9_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73669-3

  • Online ISBN: 978-3-319-73670-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics